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Executive Summary 
With a growing number of EVs, there is also an increase in the demand for electricity. If managed 

appropriately, EVs have the potential to enhance demand-side flexibility and improve grid operations 

while also reducing emissions. Methods and algorithms to optimize EV charging can rely heavily on the 

forecast of energy prices, travel patterns, and charging demand. This report implements new and 

improved methods for 1) forecasting energy prices using a deep-weighted ensemble model, 2) demand 

forecasting from a user perspective by providing a week-ahead forecast of travel patterns and energy 

consumption and 3) demand forecasting algorithms from the charge station perspective. 
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1. Introduction 
The current transportation sector, primarily reliant on fossil fuels and responsible for approximately 

15.00% of global energy-related emissions, where electric vehicles are poised to play a pivotal role in 

enabling the decarbonization of road transport [1]. In contrast to conventional fossil fuelled internal 

combustion engine vehicles (ICEVs), EVs offer various advantages, including but not limited to zero 

tailpipe emissions, independence from petroleum reliance, enhanced fuel efficiency, reduced 

maintenance requirements, and an enhanced driving experience characterized by improved 

acceleration, noise reduction, and the convenience of home and opportunity recharging [2]. 

Furthermore, considering the constrained availability of alternative options for liquid fossil fuels, EVs 

emerge as a viable avenue for mitigating overall greenhouse gas (GHG) emissions and facilitating the 

decarbonization of on-road transportation, particularly when charged with electricity from clean 

sources [3]. Consequently, the transportation landscape is rapidly evolving witnessing a growing 

acceptance of both plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs), 

heralding an anticipated widespread integration of electric vehicles (EVs) on roadways in the 

foreseeable future [4]. For instance, the global EV market has witnessed remarkable growth, surging 

from 0.72 million units in 2015 to 4.79 million units by 2019 [5]. Projections indicate a substantial 

future expansion, with the number of EVs on the road expected to surge by an impressive 36%, 

reaching an estimated 245 million by the year 2030 [6].  

This trend underscores the accelerating adoption and promising trajectory of EVs worldwide is a 

pivotal shift towards sustainability and addressing various environmental concerns [7]. The trajectory 

of growing EV numbers directly contributes to mitigating challenges associated with traditional 

vehicles, notably reducing emissions that contribute to air pollution and climate change [8]. 

Furthermore, the quiet operation of EVs compared to traditional vehicles addresses the issue of noise 

pollution, particularly in urban environments [9]. The lower operational costs associated with EVs, 

including reduced fuel expenses and maintenance requirements, contribute to economic sustainability 

[10]. Moreover, recognized for their environmental friendliness, low fuel costs, safety, reliability, 

compact design, and lightweight construction, EVs also serve as distributed storage, supporting power 

grids and microgrids, particularly during peak demand, through innovative Vehicle-to-Grid (V2G) 

technology [11]. 

However, the rapid increase in EV numbers, coupled with their large-scale penetration, imposes a 

significant burden on the power grid due to additional power demand [12]. This influx may lead to 

transformer overloads, feeder congestion, circuit faults, and overall grid instability, posing challenges 

to the power supply infrastructure [13]. The rise in EV charging poses substantial challenges to 

electricity power infrastructure, exerting influence on overall power demand and altering its shape, 

particularly during peak demand periods [14]. Given the unanticipated increase in electric demand has 

profound impacts on electricity generation, transmission, and distribution infrastructures and there is 

a pressing need for coordinated control of EV charging loads at the distribution level to effectively 

manage and mitigate these impacts [15]. 

The methods and algorithms required to optimize EV charging for these systems are available, and 

while there is room for improvement, the outcome of the optimizations rely heavily on the forecast of 

energy prices, travel patterns, and charging demand. This report focuses on exploring new and 

improved methods for performing this forecast including 1) forecasting of electricity prices for e-



 

Deliverable 4.2  

Forecasting tool and algorithm advancement V1.0 

  

 

 
Page 13 of 91 

 
 

   

mobility, 2) week-ahead EV energy consumption forecasts to support drivers and 3) charging demand 

forecasts at the station for a CSO/CPO. The report is separated into three sections to align with those 

three topics: 

1. Section 2 examines methods for forecasting energy prices focusing on using a deep-weighted 

ensemble model. The goal of this activity is to improve the price forecasting for participation 

in arbitrage or ancillary service markets.   

2. Section 3 focuses on demand forecasting from a user perspective by providing a week-ahead 

forecast of travel patterns and energy consumption to enable user-centric smart charging. The 

goal is to enable users to automatically select their desired SOC for use with smart charging 

based on their historical usage patterns and energy prices. 

3. Section 4 develops demand forecasting algorithms from the charge station perspective. This 

work focuses on forecasts the day-ahead building EV charging demand for use in EATON’s 

building energy management system.  

 

2. Energy prices forecasting through deep-weighted 
ensemble model (NUIM) 

The power grid incentivizes energy aggregators to engage in demand response, enabling them to 

manage and shift their charging loads from on-peak to off-peak periods, leveraging electricity prices 

and the dwell time of EVs while adhering to grid operational constraints [16]. In most cases, the utility 

companies offer diverse tariff structures, including peak, mid-peak, and off-peak rates within a time-

of-use (TOU) tariff system, providing fixed prices for specific time intervals [17]. However, while TOU 

fixed rates and timing-based tariff systems are effective for controlling individual EV charging at 

residential premises, they pose challenges. The awareness of individual customers about low peak 

timings can lead to a herding problem, as they may rush to charge their EVs during those periods, 

making TOU fixed rates and timing-based tariff systems less suitable for aggregators [18]. 

The efficiency of charging control by aggregators is highly dependent on advanced knowledge of 

electricity prices [19]. Price forecasting serves as an essential tool, enabling aggregators to optimize 

their participation in demand response programs. This, in turn, allows them to effectively manage 

charging loads while meeting the requirements of EV users and maximizing overall benefits [20]. 

Considering the fluctuating nature of electricity prices, traditional statistical methods, which often rely 

on average cases, prove unsuitable for accurately forecasting the dynamic electricity price variations 

[21]. As a result, these methods may not provide the precise price knowledge essential for aggregators 

[22]. In contrast, machine learning algorithms excel in discerning intricate price patterns, offering 

energy aggregators nuanced pricing information [23]. This capability plays a pivotal role in efficiently 

managing charging loads at the aggregator level, contributing to enhanced system efficiency and 

adaptability [24]. Electricity prices are characterized as time series data and present challenges for 

accurate forecasting due to their intricate and fluctuating nature based on temporal dependencies 

[25]. Ensemble Long Short-Term Memory (LSTM) models emerge as critical tools in managing the 

complexities of such price variations and exhibit superior performance in accurately forecasting price 

patterns compared to simplified LSTMs, ML-based regression, and other deep learning models [26]. 

Ensemble LSTM models represent a specialized form of ensemble learning, utilizing multiple LSTM 
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networks to collectively make predictions [27] where the LSTM, is a recurrent neural network (RNN) 

architecture designed to capture and learn long-term dependencies in sequential data [28]. The 

ensemble strategy involves training diverse LSTM models with varied initializations or architectures 

and then combining their predictions to enhance overall performance [29]. The challenge in 

constructing Ensemble LSTM models lies in determining optimal weights for each individual model 

within the ensemble, where the weights dictate the contribution of each model to the final prediction 

[30]. The process of finding optimal weights entails minimizing a loss function that quantifies the 

disparity between the ensemble’s predictions and the actual outcomes. However, achieving precise 

and accurate optimal weights in ensemble LSTM models is challenging as it involves maintaining 

effective contribution factors from each model within the ensemble, striking a delicate balance for 

accurate predictions [31]. To address the existing knowledge gap, this paper introduces a Deep-

Weighted Ensemble Model (DWEM) for wholesale electricity price forecasting and establishes a 

heuristic mechanism for determining optimal weights within the ensemble model. Our contributions 

can be summarized in three key aspects. 

 We presented a novel Deep-Weighted Ensemble Model for Wholesale Electricity Price 

Forecasting, with the aim of optimizing EV charging at the aggregator level. Leveraging a 

carefully formulated representation of wholesale electricity prices, our approach employed 

both standard and stacked Long Short-Term Memory networks as building blocks of the 

proposed deep-weighted ensemble model. The ensemble paradigm was strategically used to 

harness the complementary strengths of diverse models, and the deep-weighting mechanism 

ensured an adaptive aggregation of predictions. 

 In our ensemble construction process, we introduced a mechanism for determining optimal 

weights, utilizing a heuristic approach, which evaluated a diverse range of weight 

configurations, assessing each configuration's accuracy. The heuristic method employed a 

systematic exploration of the weight space, considering various combinations to identify those 

characterized by the highest levels of accuracy. This selection process employed ensures that 

only the most precise configurations are incorporated into the ultimate ensemble model. 

Through the implementation of this heuristic mechanism, our contribution not only bolsters 

the resilience of the ensemble but also establishes a systematic approach to determining 

weights and is pivotal for the precision and dependability of the Wholesale Electricity Price 

Forecasting model, especially in the context of optimizing Electric Vehicle charging at the 

aggregator level. 

 We implemented our proposed model on a publicly available dataset sourced from the 

Houston electricity dataset. To enhance the dataset, we conducted a detailed data engineering 

process, incorporating a correlation matrix for feature selection and employing one-hot 

encoding to handle various label features. Subsequently, our developed model was applied to 

this refined dataset, and we conducted a series of comparative case studies, considering 

scenarios with and without outliers. Furthermore, we conducted benchmark analyses by 

comparing our results with those obtained from state-of-the-art models, such as XGBoost, 

Light Gradient Boosting, Linear Regression, Facebook’s Prophet model, Fully Connected Neural 

Network, and LSTM models. 
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2.1. State of the Art 

With the proliferation of EVs and their consequential impact on the electric power generation, 

transmission, and distribution systems, researchers have increasingly directed their attention to the 

challenges posed by the substantial load induced by EV charging [31]. This has prompted a surge in 

scholarly exploration, leading to a comprehensive examination of the electric charging load 

predicament across private, semi-public, and public charging infrastructures in recent literature [32]. 

In addressing the divergent needs of the power grid, which seeks to minimize charging load, and EV 

users, who prioritize reducing both charging and waiting times, the authors in [33] devised a fuzzy 

inference-based mechanism. This approach is designed to optimize the charging and waiting times for 

a collective group of EVs within a parking lot while concurrently accommodating the constraints set by 

the power grid. The authors proposed a two-stage bi-layer game charging optimization model in [34] 

to address the non-coordination among a network operator, a distributed generation operator, and a 

charging agent. The first stage utilized a dynamic virtual price-based demand response model for pre-

optimizing charging loads, leading to a significant reduction in energy abandonment and net load 

fluctuation. In the second stage, a bi-layer Stackelberg game model was introduced, allowing 

participants independent decision-making and achieving optimal comprehensive benefits in a multi-

participant charging system. In our earlier study [35], we addressed challenges related to fixed-timing 

EV charging by developing a Charging Cost Optimization Algorithm (CCOA). This heuristic algorithm 

learns real-time price patterns and EV information to optimize charging loads and costs in residential 

settings. Simulation experiments were conducted to compare various charging scenarios, including 

both individual and aggregated charging models. These scenarios were contrasted against 

uncoordinated charging, fixed-rate charging, and coordinated time-of-use charging methodologies. 

The evaluation criteria centred on assessing the impact on the power grid in terms of potential 

overloading and analysing the associated charging costs. The study [36] introduced a cooperative 

energy management strategy that facilitates the sharing of energy among end-users, particularly 

focusing on intelligent charging and discharging of Electric Vehicles (EVs) for Vehicle-to-Anything (V2X) 

and Anything-to-Vehicle (X2V) modes. The proposed method employed a Mixed-Integer Programming 

(MIP) approach and utilized a robust Gurobi optimizer within a generic framework for Cooperative 

Power Management (CPM). The CPM ensured a target state of charge (SoC) at departure for all vehicles 

without causing a rebound peak in total grid power, even in the absence of photovoltaic power. The 

model includes two methods: the first involving one-way power flow and the second introducing two-

way power flow, enabling vehicle-to-vehicle or vehicle-to-loads modes. Their analysis demonstrated 

the model’s effectiveness in creating a robust and efficient charging and discharging schedule for 

multiple EVs, aligning with the sharing economy concept, reducing peak power demands, and 

enhancing user comfort. In another study [37], we introduced a Two-Layer Decentralized Charging 

Approach (TLDCA) using fuzzy data fusion to optimize the charging cost of residential EVs. The TLDCA 

addressed a fuzzy objective function through fuzzy integer linear programming. This approach 

considered multiple day-ahead price patterns and state-of-charge inputs, determining the optimal 

charging schedule to reduce costs and peak-to-average ratio. Simulations demonstrated the TLDCA’s 

effectiveness in comparison to uncoordinated charging, standard-rate charging, and time-of-use 

charging schemes. The Two-Layer Decentralized Charging Approach (TLDCA) was improved with the 

development of a hybrid coordination scheme (HCS) [17] for EV charging in residential areas. This 

improvement addressed challenges associated with herding and user satisfaction in both centralized 

and decentralized charging approaches. The HCS incorporated a fuzzy inference mechanism to 
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optimize peak load, mitigate herding issues, and reduce charging costs. Utilizing the IEEE 34 bus system 

for two case studies, the proposed hybrid coordination scheme demonstrated superior performance 

compared to alternative charging strategies, including uncoordinated charging, standard-rate 

charging, time-of-use charging, and two-layer decentralized approaches. Considering the impact of 

aggregated charging loads on the distribution network, the optimization of charging loads in a smart 

parking lot becomes crucial and the implementation of efficient charging strategies in smart parking 

lots is essential for maintaining grid stability and ensuring user satisfaction. It plays a significant role in 

reducing overall aggregated charging loads while satisfying the charging demands of EV users at the 

time of their departure. Considering the impact of aggregated charging loads on the distribution 

network, optimizing charging loads in a smart parking lot is crucial. Numerous studies have 

implemented effective charging strategies [38] that consider uncertain user behaviour, including 

arrival and departure patterns, battery capacities, and required energy for the next trip based on 

distance [39], as well as grid power availability [40].  

These approaches ensured grid stability and user satisfaction by significantly contributing to reducing 

overall aggregated charging loads while meeting the charging demands of EV users upon departure  In 

both residential and aggregated parking lots, these studies [17] [31] [32] [33] [34] [35] [36] [37] [38] 

[39] [40] have primarily considered day-ahead price patterns by assuming that the current day’s prices 

follow the same pattern as the previous day. However, in real-world scenarios, prices are dependent 

on the electric load pattern and may differ from the previous day [41]. Consequently, these studies 

may lack robustness in optimizing charging costs and loads and necessities for predictive machine 

learning-based models that can adapt to dynamic price patterns and provide more accurate and 

responsive optimization in response to real-time variations in electricity prices and load patterns [42].  

To fill-up the gap, in a recent study [43], a multi-bi-forecasting system is presented, incorporating 

multivariable and multi-input multi-output structures. The developed system adeptly manages high-

frequency electricity price and load data, employing a multivariable arrangement for forecasting and 

a multi-input multi-output structure featuring three member models. The achieved results, obtained 

through a unified strategy leveraging the multi-objective Salp swarm algorithm, showcase superior 

forecasting capabilities for both point and interval forecasting. This is substantiated by quantitative 

assessments conducted in the Australian electricity market. The study in [23] introduced a data-driven 

demand-side management approach for a solar- powered EV charging station (CS) connected to a 

micro- grid. Their approach leveraged the station to addressed peak demand by compensating for 

energy requirements, reducing reliance on conventional sources. Real-time data from PV power 

stations, commercial and residential loads, and EVCSs were used for simulations. A deep learning 

approach was developed for energy supply control and off- peak hour charging, while two machine 

learning methods were compared for energy storage system state of charge estimation. The 24-hour 

case study demonstrated that the EVCS effectively compensated for peak demand. Amid the growing 

adoption of EVs, the research outlined in [44] addresses the need for effective charge management 

systems to anticipate peak loads in charging infrastructure. The study evaluates multiple machines 

learning models, emphasizing the superior performance of LSTM in optimizing peak voltage, reducing 

power losses, and improving voltage stability by compressing the load curve. These outcomes 

contribute to minimized billing costs, showcasing the effectiveness of the proposed machine-learning-

based approach. In response to the challenges posed by global economic trends and sharp fluctuations, 

the study [45] focused on predicting energy futures prices. The proposed multiscale model integrates 

a decomposition-ensemble approach with a subcomponent clustering method, allowing the derivation 
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of subseries with different frequencies from the decomposed energy futures price series. This 

integration aims to enhance the feasibility of energy futures prediction. The ensemble model 

incorporates both linear model forecasts for linear component trends and machine learning methods 

for predicting nonlinearity. The study conducted in [46] introduced a hybrid model combining 

Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) for daily electricity price 

forecasting in the Iranian electricity market. The primary objective was to provide an accurate 

estimation of energy prices during peak hours, enabling precise planning and revenue maximization 

for hydropower generation. The model underwent testing using hourly data spanning the period from 

2020 to 2021 and was compared against a multivariate linear regression model. The results indicated 

that the proposed hybrid model exhibited superior accuracy in electricity price forecasting compared 

to the multivariate linear regression model. The research [47] cantered on utilizing the XG Boost (XGb) 

and Light Gradient Boosting Model (LGBM) models to predict electricity prices in the Integrated Single 

Electricity Market~(ISEM) for energy market trading in Ireland. Eight novel technical indicators were 

derived from hourly electricity price data collected between February 2019 and November 2019. The 

study sought to evaluate whether incorporating these technical indicators as inputs could improve the 

performance of the XG Boost model. The outcomes demonstrated that the proposed technical 

indicators effectively contribute to accurate predictions of electricity prices, highlighting their efficacy 

in forecasting. The study in [48] investigated the efficacy of Multivariate (MRV)-LSTM in forecasting 

electricity prices, underscoring the significance of considering seasonality. The research challenges the 

belief that intricate architectures like MRV-LSTM are indispensable for incorporating seasonal 

behaviour, demonstrating competitive performance with simpler models. In a multi-year examination 

of the German electricity market, the proposed neural networks with an embedding layer surpassed 

MRV-LSTM and time-series benchmark models in short-term price forecasting, showcasing their 

practical utility and offering potential economic insights. The study in [49] introduced a Multiple Linear 

Regression (MLR) method for electricity price forecasting, emphasizing the consideration of various 

predictors to minimize the mean absolute percentage error. Conducted on training data from 

September 2018 to September 2019 in the day-ahead electricity market in Turkey, the research 

highlighted the crucial role of lagged electricity prices (previous day, one week, and lagged moving 

average prices) in achieving precise price estimation. Additionally, the inclusion of natural gas, oil, and 

coal prices, among other coefficients, contributed to enhanced result accuracy. The study emphasized 

the importance of training data length in reducing error proportions and noted comparable error rates 

to regular regression methods and dynamic regression models in electricity price forecasting.  

Nonetheless, all these studies employ either single models [23] [43] [44] or hybrid models [45] [46] 

[47] [48] [49]. The single models often struggle to capture the temporal fluctuations in electricity 

prices, while the hybrid models lack exploration of coupling mechanisms, rendering them un- suitable 

for aggregator-level price prediction. Consequently, their performance is questionable, exposing a 

notable research gap in providing adequate foresight into electricity prices for effective management 

and control of EVs at both low-voltage and aggregator levels. 

2.2. Deep-Weighted Ensemble Model 

In this section, we explore the development of the proposed DWEM, leveraging the concept of weights 

to integrate standard and stacked LSTMs, aiming to enhance the accuracy of predicting temporal 

fluctuated prices. The DWEM is crafted to capture intricate temporal price patterns within the input 

time series data, effectively leveraging the strengths of both standardized and stacked LSTM 
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architectures to mitigate individual model biases and improve overall forecasting accuracy. We begin 

by elucidating the problem formulation and the architecture of the proposed model, emphasizing the 

application of DWEM in managing EVs at the LV-aggregator level. Subsequently, we delve into the 

details of the standardized and stacked LSTM models, followed by an exploration of the DWEM 

formation, elucidating the heuristic mechanism for determining optimal weights. The power system 

network primarily comprises three major functional entities: power generation companies, utility 

companies acting as both buyers and sellers of energy, and consumers who are the end-user customers 

purchasing energy, as shown in Figure 1. 

  

Figure 1. System model of the proposed deep-weighted ensemble model for wholesale electricity price 
forecasting to manage the charging EVs at the aggregator level. 

The network spans three sub-transmission systems, each operating at different standard voltage 

levels: high voltage (HV) transmission at 110kV, medium voltage (MV) transmission at 38kV, and low 

voltage (LV) transmission at 230V [50]. The LV distribution system connects energy aggregators and 

end-users, with aggregators mainly procuring energy from utility companies and providing it to end-

users to facilitate their needs. Transmission System Operators (TSOs) oversee the operations of both 

the HV and LV transmission systems. Meanwhile, Distribution System Operators (DSOs), in 

collaboration with utility companies, bear the responsibility for ensuring the seamless operations of 

the LV transmission system [51]. Aggregators play a crucial role in optimizing the aggregated load of 

Electric Vehicles (EVs), prompting utility companies to provide incentives for aggregator participation 

in Demand Response (DR). This support aids the power grid in managing aggregated charging loads, as 

illustrated in the architecture of the proposed Deep Ensemble Model (DWEM) in Figure 1. Each i-th EV 

is characterized by its specific arrival and departure sequence denoted as battery capacity (𝐶𝐵𝑖) 

current state-of-charge (𝑆𝑜𝐶𝑖) and departure state-of-charge(𝑆𝑜𝐶𝑖
𝑑𝑒𝑝
).  Given the arrival and 

departure sequence at time 𝑡 , we define the dwell time(𝐷𝑇𝑖) and the required state-of-charge(𝑆𝑜𝐶𝑖
𝑟) 

for the 𝑖   EV, as outlined in Equations (1) and (2). 
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𝐷𝑇𝑖  =  𝑡𝑖
𝑑𝑒𝑝
  − 𝑡𝑖

𝑎𝑟𝑟 (1) 

 

 
(2) 

In the current time step (𝑡), the required charging time(𝑇𝑖
𝑟) and the energy (𝐸𝑖) delivered to the 𝑖  EV 

battery can be computed by accumulating charging rate (𝐶𝑖) and the 𝑆𝑜𝐶𝑖 in the previous time step 

(𝑡 − 1), considering the 𝐵𝐶𝑖 and charging efficiency 𝜂 , as presented in Equations (3) and (4). The total 

energy (𝐸𝑇𝑜𝑡𝑎𝑙) consumption at the aggregator level at time step 𝑡  is computed by summing the 

overall energies times the price(𝑃)  of the connected EVs, as presented in Equation (5). 

 

 
(3) 

 

 
(4) 

 

 
(5) 

The aggregator garners revenue from EV customers through the provision of charging services for their 

electric vehicles. The charging cost(𝐶𝑖) for the 𝑖  customer is determined by considering the markup 

price and the wholesale price, as elucidated in Equation (6). While, in the DR program (Figure 1), the 

utility company provides the regulation capacity(𝐸𝑟), representing the amount of load reduction in 

kilowatts to the aggregators and the incentive  (𝑃𝑢𝑡𝑖𝑙𝑖𝑡𝑦)from the utility grid based on the regulation 

capacities offered. This dual revenue model implies that, on one hand, an aggregator generates income 

from customers through the price difference between retail and wholesale rates, while, on the other 

hand, it receives revenue [52] from the utility company for providing regulation services and we 

compute the overall revenue (𝑅)of the aggregator as presented in Eq. (7). 

 
(6) 

 

 
(7) 

In Equation (6), 𝑀  represents the markup price, defined as an additional margin over the wholesale 

price 𝐺 , contributing to the aggregator's revenue. In Equation (7), 𝑃𝑢𝑡𝑖𝑙𝑖𝑡𝑦 signifies the incentive from 

the utility company, 𝐸𝑟  denotes the total amount of regulated energy, and ∆𝐸𝑟 represents the amount 

of regulated energy reduced by the aggregator in the time horizon  𝑇  such that 𝑡  =  {1,  2,  3,  ⋯ ,  𝑇}. 

Considering the fixed amount the EV customer pays for their consumed energy, which remains 

constant in nature, the aggregator's revenue exhibits a linear dependency on their regulation services. 

Therefore, to maximize revenue, the aggregator must optimize energy consumption within the DR 

program, providing increased regulation services. As a result, the aggregator needs to manage charging 

EVs' following the wholesale price pattern, thus Equation (5) can be reformulated as an objective 

function, incorporating wholesale prices, to minimize total energy consumption, as defined in Equation 

(8). 

 

 
(8) 
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The effective management of charging EVs relies heavily on the accuracy of wholesale energy price 

forecasting. A more precise forecast of wholesale prices has the potential to significantly enhance the 

aggregator's efficiency, thereby contributing to increased revenue. In the following sections, we delve 

into the discussion of the proposed weighted-ensemble model for wholesale energy price forecasting. 

This model aims to assist energy aggregators in efficiently managing the charging of EVs, thereby 

supporting both the utility company and the power grid with energy regulation services. 

2.3. The Mechanism of the Proposed Deep-Weight 

Ensemble Mode 

The energy prices follow a time series sequential data format, recording observations at half-hourly or 

hourly intervals, which poses challenges during training with deep neural networks. In such cases, 

gradients can become very small, impeding the model's learning process [53]. The LSTM, a specialized 

type of recurrent neural network (RNN), is well-suited for mitigating these issues. Specifically designed 

to address the vanishing gradient problem, LSTMs excel at capturing long-term dependencies in 

sequential data, making them particularly effective for modelling and forecasting energy prices over 

time [54]. The LSTM architecture incorporates distinct functional elements, each designed for specific 

purposes in capturing and handling sequential dependencies. These components are associated with 

the two primary layers: the input layer and the LSTM layer [55], and are outlined below. 

 The Input Layer: The input layer in an LSTM architecture serves as the initial stage for 

introducing external information into the network. Its primary responsibility is to process and 

prepare the input data before engaging with the LSTM cell. The key components of the input 

layer include input gate, forget gate, and the cell state update [56].  

 The LSTM Layer: The LSTM layer is a crucial component of the LSTM architecture, explicitly 

crafted to overcome challenges linked to lengthy sequences in neural networks. It effectively 

addresses the vanishing gradient issue frequently encountered in traditional RNNs. The key 

constituents associated with the LSTM layer are the hidden state and output gate [57]. 

These linked components collectively form the foundation of the LSTM architecture, where the input 

layer manages the flow of information, and the LSTM layer orchestrates the cell state and hidden state 

dynamics [58]. To enhance the standard LSTM model, we replaced the tanh activation function in the 

LSTM layer with the Rectified Linear Unit (ReLU) activation. This modification aims to reduce the 

model's resource consumption while maintaining higher accuracy. The ReLU function introduces non-

linearity, which can mitigate the vanishing gradient problem and enable the model to learn more 

intricate representations of the data, resulting in improved performance. Furthermore, recognizing 

the crucial role of hyperparameter tuning in optimizing the model's architecture, we utilized the 

Random Search technique. This approach yielded optimal values of 128 units for the input layer and 

64 units for the LSTM layer. These optimized hyperparameters strike a balance between capturing 

complex patterns in the temporal fluctuated energy price data and avoiding overfitting as shown in 

Algorithm 1. 
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The Stacked LSTM model is an advanced variant of RNNs designed to address the challenges of 

capturing long-term dependencies in sequential data. The stacked LSTM architecture proves especially 

effective in tasks related to time series prediction. The hierarchical structure of stacked LSTMs enables 

them to adeptly learn and leverage complex representations, making these models a powerful choice 

for effectively modelling sequential data with inherent temporal dependencies.  The pseudocode for 

the Stacked LSTM is presented in Algorithm 2, with a detailed explanation of the functional 

components of the model provided as follows: 

 The Input Layer:  The input layer serves as the entry point for processing the temporal patterns 

inherent in the time series data within the stacked LSTM architecture. In the case of a time 

series electricity prediction model, the Input Layer plays a crucial role by transforming energy 

price data into a three-dimensional format. This adaptation is essential since LSTM requires 

input data in a three-dimensional structure for effective computation and ensures that the 

subsequent LSTM layers can appropriately process the temporal dynamics and patterns 

inherent in the energy price data. 

 The Stacked Layer: Stacked LSTMs are comprised of several LSTM layers organized 

sequentially. As the input sequence traverses through each LSTM layer, it undergoes 

processing, and the resulting hidden state is transmitted to the subsequent layer. This 

processing stage includes the transformation of the 3D-data back to 2D-data using the Flatten 

method. Subsequently, the flattened data is forwarded to the convolutional neural network 
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(CNN) layers through the Dense layer to seamlessly integrate of  CNN components, facilitating 

the extraction of spatial features from the transformed data. This stacking mechanism is 

pivotal, as it empowers the model to discern and encapsulate hierarchical features and 

temporal dependencies present within the data. The sequential arrangement of LSTM layers 

facilitates the extraction of intricate patterns at varying levels of abstraction, contributing to 

the model's capability to understand the complexities embedded in the input data. 

 The Parameters and Configuration Layer: The tuning of hyperparameters, including the 

quantity of LSTM units in each layer and the total number of layers in the stack, is a critical 

aspect that can be adjusted based on the intricacy of the task. In our model, the initial LSTM 

layer comprises 128 hidden units, receiving the historical energy prices data as input. The 

subsequent LSTM layer is configured with 256 hidden units, and both layers employ the ReLU 

activation function. The hierarchical stacking of LSTM layers builds upon the representation 

learned by the preceding layer, progressively refining the model's understanding of temporal 

patterns within the data. 

 The Output Layer: To prepare the output from the LSTM layers for the final prediction step, 

we utilize the 'Flatten()' operation. This operation reshapes the 3D tensor into a 2D format, 

enhancing the model's ability to capture correlations between temporal features and the 

target variable. Following the flattening process, we introduce two fully connected Dense 

layers, featuring 128 and 64 neurons, respectively, both activated by the ReLU activation 

function. These dense layers play a crucial role in learning complex feature interactions derived 

from the LSTM layers, allowing the model to develop a more profound understanding of the 

input sequences. To mitigate overfitting and enhance generalization, we incorporate dropout 

regularization with a rate of 0.1 after the first Dense layer. Dropout randomly deactivates a 

proportion of neurons during training, promoting reliance on multiple paths for information 

flow and reducing dependence on specific features. The subsequent Dense layer with 32 

neurons continues to extract relevant features from the learned representation. Another 

dropout layer with a rate of 0.1 follows, further enhancing robustness and preventing 

overfitting. This comprehensive architecture ensures the model's capacity to capture intricate 

patterns while promoting generalization and preventing overfitting. 

After training and testing both the standard LSTM and stacked LSTM models on energy price data, we 

proceeded to develop a Deep Ensemble Model. This ensemble leverages the weighted ensemble 

mechanism, combining predictions from the base models by assigning weights to each model's output. 

The process involves training individual models and aggregating their predictions in a weighted 

manner, as presented in Eq. (9). 

 
(9) 

Where 𝐸(𝑥) represents the ensemble prediction, while 𝑃𝑠𝑡𝑑, 𝑃𝑠𝑡𝑘 denote the predictions of the 

standard and stacked LSTM models, respectively. Moreover, 𝑃𝑠𝑡𝑑, and 𝑊𝑠𝑡𝑘 refer to the respective 

weights assigned to these models. These weights play a crucial role in determining the influence of 

each model on the final ensemble prediction, contributing to a more robust and accurate overall 

prediction.  
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However, determining the optimal weights for an ensemble model is challenging due to the non-

convex nature of the weight space, introducing complexities with multiple minima and maxima. To 

ascertain the optimal weights and enhance the forecasting performance of the proposed DWEM, we 

introduce a heuristic algorithm. This algorithm systematically tracks the weights, predictions, and their 

corresponding results, adaptively updating these weights to iteratively seek the most optimal 

configuration, thereby enhancing forecasting performance. The flowchart of the algorithm is 

presented in Figure 2 and Figure 3, while the main steps are outlined below: 

 Run the Algorithm 3 (refer to Figure 2) and set the flag to 0 to monitor the weights of the 

standard LSTM model, as discussed in Algorithm 1. 

 Examine the flag value to dynamically adjust the weight of the standard LSTM model. If the 

flag is set to 0, indicating a specific condition, set the weight 𝑊1 to 1.0. Conversely, if the flag 

is set to 1, implying an alternative scenario, decrement 𝑊1 by 0.1. Simultaneously, establish 

the weight 𝑊2 at 0.1 and proceed to execute the DWEM to acquire the updated forecasting 

results with these updated weights. 
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 Call the function (refer to Figure 3) and assess the accuracy of the DWEM. If the accuracy is 

non-zero, compare it with the previous accuracy. If the newly obtained accuracy surpasses the 

previous one, update it with the newly obtained accuracy and save the corresponding weights. 

However, if there is no improvement in the accuracy, retain the previous accuracy and its 

corresponding weights. Subsequently, return the results to the calling algorithm (Figure 2) 

 Check if the weight 𝑊2 of stacked LSTM is less than or equal to the predefined criteria value 

of 1.0. If this condition is met, increment 𝑊2 by 0.1 and return to step 1 to once again collect 

the ensemble model results with the updated value of the weight obtained from the stacked 

LSTM. Invoke the function (refer to Figure 3) to update the corresponding weights and results 

iteratively. Continue this process until the inner loop criterion is satisfied. This iterative 

approach ensures a thorough exploration of weight adjustments until the specified criteria are 

met. 

 Update the flag value by setting it to 1. Examine the weight 𝑊1 against the predefined value 

of 0.1. If 𝑊1 is greater than or equal to 0.1, proceed to step 2. In this iteration, decrement the 

𝑊1 to 0.1 while resetting 𝑊2 to 0.1. Pass the updated 𝑊1 and 𝑊2values to the DWEM to record 

the updated results. Adjust the weights of 𝑊2 by calling the function (refer to Figure 3) for the 

second iteration of the outer loop, handling the standard LSTM weight 𝑊1. Repeat the overall 

process from step 2 to step 4. However, if the value of 𝑊1fails to meet the predefined criteria, 

print out the optimal results and conclude the algorithm (refer to Figure 2). This approach 

ensures a systematic exploration of weight adjustments, maximizing the adaptability and 

performance of the algorithm until the optimal weights are identified with highest accuracy. 
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Figure 2. Flowchart of the proposed DWEM for determining the optimal weights through the heuristic 
approach. 

 



 

Deliverable 4.2  

Forecasting tool and algorithm advancement V1.0 

  

 

 
Page 26 of 91 

 
 

   

 

Figure 3. Flowchart of the subroutine of updating the weights for each of the iteration in the heuristic 
approach. 

The foundational mechanism for attaining optimal weights through heuristic algorithms is elucidated 

in Figure 4. In this figure, the horizontal axis (𝑥 − 𝑎𝑥𝑖𝑠) signifies the 𝑊1of the standard LSTM, while 

the vertical axis (𝑦 − 𝑎𝑥𝑖𝑠) denotes the 𝑊2 of the stacked LSTM model. The output of their combined 

contribution in the DWEM is gauged by accuracies (𝐴𝑐𝑐1,  𝐴𝑐𝑐2,   ⋯ ,  𝐴𝑐𝑐10).  In the initial iteration, 

these weights are set to their respective initial values, and the results are stored in the variable 𝐴𝑐𝑐1. 

Following these results, the weights are updated by decrementing the standard LSTM weight (𝑊1) by 

0.1 while incrementing the stacked LSTM weight (𝑊2). This process iteratively unfolds while 

maintaining 𝑊1constant and updating 𝑊2, thereby collecting corresponding results. Once all 𝑊2 values 

are tested against the initial 𝑊1 value is decremented by 0.1, and 𝑊2 is reset to its initial value. This 

iterative updating continues, and the results are recorded. Consequently, after testing all weights 

(𝑊1 𝑎𝑛𝑑 𝑊2) and their corresponding performance (accuracy), the algorithm selects the weights 

resulting in the highest accuracy. This heuristic approach significantly enhances the performance of 

the proposed DWEM by determining optimal weights for both the standard and stacked LSTMs, 

contributing to a substantial boost in model performance. 
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Figure 4. An illustration of determining the optimal weights for enhancing the efficiency of the proposed 
DWEM through the heuristic approach. 

 

2.4. Experimental Setup and Results Discussion 

In this section, we demonstrate the effectiveness of the proposed DWEM through experimental 

validation and a comparative analysis of results. We commence with data engineering, emphasizing 

the dataset's characteristics and preprocessing steps, including the criteria for feature selection. 

Subsequently, we delve into the discussion of performance metrics. Finally, we conduct a comparative 

study, considering these performance metrics to thoroughly evaluate and compare the effectiveness 

of the proposed DWEM. To simulate the proposed DWEM for forecasting energy prices to manage EVs 

at the aggregator level, we employ a dataset sourced from the Texas electricity market, specifically the 

ERCOT (Electric Reliability Council of Texas) market. ERCOT divides the Texas region into four 

congestion management zones (CMZs), namely West, North, South, and Houston. This study focuses 

on the dataset representing wholesale electricity prices in the Houston zone. The original data was 

collected at 15-minute intervals; however, for this study, we computed hourly averages by aggregating 

prices over four consecutive 15-minute periods. The detailed presentation of this processed data is 

provided in the subsequent sub-sections. The experimental dataset spans from January 2015 to 

December 2018, encompassing a total of 34,542 samples and featuring nine distinct attributes: 

Delivery Date, Delivery Hour, Repeated Hour Flag, Settlement Point Name, Settlement Point Type, 

DayStatus, Temperature in F, Load in Houston, and Settlement Point Price. To facilitate model training 

and evaluation, we partitioned the dataset into two subsets: 90 % (31,087 samples) for training and 10 

% (3,455 samples) for validation. Throughout the training process, we initialized the learning rate at 

0.01 and implemented a dynamic learning rate schedule, adjusting the rate as necessary to facilitate 

model convergence. This adjustment involved incorporating a factor of 0.1 to decrease the learning 

rate, and we set the patience value to 10 epochs, determining the duration the model waits for 

improvement before further adjusting the learning rate. Considering the number of features, the 

target variable is the settlement point price. Among the remaining eight variables, we selected the 

input variables based on the correlation matrix in Figure 5. 
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Figure 5. Correlation matrix highlighting a relationship between the target variable and the input variables. 

 

 

 

Figure 6. A representation of the temperature and load count in Houston region. 
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Figure 7. The relationship between load and the temperature highlighting the increasing trend of load with 
the increasing temperature. 

 

 

Figure 8. The relationship between load and the settlement price highlighting the increasing trend of price 
pattern with the increasing load. 
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Figure 9. Representation of standard deviation with different models, including user-modified and auto-
modified parameter tuning, in scenarios with and without outliers. 

 

 

Figure 10. Fitting of different models corresponding to various standard deviation values. 
 

Table 1. An evaluation of the accuracy of the proposed DWEM model according to the different standard 
deviations. 

Standard deviation 
($/MWh) 

Accuracy [%] 

1 14.09 
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2 41.05 

3 64.08 

4 69.60 

5 75.56 

6 78.35 

7 82.49 

8 84.09 

9 85.91 

10 87.41 

 

Table 2. The accuracy comparison of the proposed DWEM (Auto-Modified Hyperparameters) against state-
of-the-art models (Auto-Modified Hyperparameters) concerning to the various values of the standard 
deviations in the without outlier's scenarios. 

Standard 

deviation 

($/MWh) 

Accuracy [%] 

  DWEM XGboost [47] LGBM [47] LR model [57] 
MVR model 

[58] 

1 14.09 2.09 17.86 13.97 18.93 

3 64.08 8.47 39.88 40.55 53.35 

5 75.56 21.86 64.29 61.62 67.32 

7 82.49 44.54 76.19 76.36 80.09 

10 87.41 67.70 79.32 80.86 83.82 

 

 

Figure 11. A comparison of the accuracy of the different models considering the User and Auto Modified 
hyperparameters in both without and with outlier's scenarios. 
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Figure 12. A compression of the MSE and MAE of the different models considering the User and Auto 
Modified hyperparameters in both without and with outlier's scenarios. 

 

3. EV Demand Forecasting algorithm to optimally 
manage a week of EV usage (IREC) 

3.1. Introduction 

This activity aims to produce a smart tool that determines the optimal management for the charging 

session of an EV, while knowing the future medium-term mobility and consumption of the vehicle. The 

forecast developed can provide economical savings, both directly to the user, and indirectly through 

prolonging the lifetime of the battery.  

For an electric vehicle (EV) to begin smart charging or bidirectional, the EV driver must provide some 

information to the charger. This typically includes their departure time, desired state-of-charge, 

minimum state-of-charge and for bidirectional charging the amount of cycling allowed. Requiring this 

information complicates the EV charging experience, and while a driver may have some sense for this 

information they may incorrectly estimate their departure time or the state-of-charge that they need. 

These conditions can cause an increase in the cost of charging for the driver. Additionally, when 

charging at a charging station managed by a charge station operator (CSO), the incentives for a CSO 

and the EV driver are not always aligned. The CSO wants to maximize their revenue so, while they may 
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want to implement smart charging to reduce their energy cost, they are incentivized to charge the 

vehicle as much as possible and do not have a direct incentive to reduce degradation of the battery.  

The goal of this work is to deliver a tool that will optimize smart and bidirectional charging processes 

by estimating vehicle trips for the following week, trip energy consumption, desired and minimum 

state-of-charge to minimize the cost of charging, while also considering the impacts of degradation 

(for both unidirectional and bidirectional charging). Looking one week ahead into the future will allow 

to consider energy prices fluctuations during the weekend or caused by renewables that might affect 

charging behavior. For this, a combined approach of forecasting and optimization techniques are 

proposed. While mobility data of drivers is still not easy to access, the authors used the public Oporto’s 

taxi mobility dataset [59] [60] to develop a forecasting algorithm. The forecasting algorithm aims to 

determine the location and energy trip consumption of the vehicle for the following week. Under some 

assumptions for electricity prices, charging power, vehicle battery capacity, etc. a week-long forecast 

with five minute granularity is created then that forecast is inputted into a Mixed Integer Linear 

Programming (MILP) optimization model to determine the optimal charging profile from the 

perspective of the vehicle owner to minimize their costs. This information could be automatically 

provided to the charge controller to streamline the implementation of smart and bidirectional charging 

for EV drivers.   

Below, see the structure of the document. The following sections describe the state-of-the-art in 

forecasting algorithms, smart charging optimization, use case dataset specifics, and results 

interpretation. 

Forecasting Algorithms 

This section provides an overview of state-of-the-art forecasting algorithms is presented. The chosen 

algorithms are introduced along with an explanation of their relevance to the specific scenario. A 

selected use case is outlined to demonstrate how these algorithms are practically applied.  

Optimal charging session schedule 

This section delves into the optimization of EV charging schedules, focusing on weekly trip patterns. It 

provides insights into the parameters and variables considered in the optimization process, the 

objective function guiding the optimization and the relevant constraints. 

Use Case and Dataset Description 

Here, we specify the use case employed for testing forecasting and optimization algorithms. A detailed 

description of the dataset used in these evaluations is provided. 

Results Interpretation 

This section is dedicated to presenting and interpreting the results derived from the application of 

forecasting and optimization models. It includes a comprehensive analysis of the outcomes, 

emphasizing their implications and relevance to the study. 
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Figure 13. Forecasting model framework: Wider arrows represent the general modules outputs flow. Inside 
each box, dashed lines represent the forecasting models inputs and outputs. 

 

3.2. Forecasting algorithms 

In forecasting section, we have developed two different forecasting models: one for forecasting vehicle 

location and one for forecasting EV energy consumption over a week. 

3.1.1. State of the Art 

In the recent years, similar studies, either on input dataset or in the horizon of prediction challenge 

nature, have been performed.  

Regarding the location prediction, in 2019 [61], a LSTM-based short term forecasting model for vehicle 

trip prediction was developed. The LSTM model results were compared against Markov chain models, 

obtaining notable improvements in terms of precision of the forecast. The nature of the dataset is 

similar to the dataset in our problem, using seven months of hourly records of locations records of 

roamers in Italy. In 2020 [62], a hierarchical temporal attention-based LSTM encoder-decoder model 

for individual location sequence prediction was proposed. The algorithm forecasted both daily and 

weekly behaviour obtaining accurate results in a private car mobility dataset from China. The dataset 

recorded 37,854 trips, in total, for 49 individuals from March, 2017 to October, 2018 using onboard 

GPS equipment. Each trip was represented by a sequence of time-stamped points with the location of 

the vehicle. In 2020 [63], a LSTM based model which encodes the locations as semantic words, was 

tested against the same taxi dataset used in our study. The goal of their algorithm was different, as it 
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was used to predict the next taxi destination, and it is unclear how well this model would perform on 

a long-term prediction. Based on this review, the use of an LSTM model to predict vehicle location over 

a 1 week period. Finally, a systematic review of how is the scientific community working in mobility 

forecasting was performed in [4], indicating the key points that are lacking in the studies and their 

methodology. 

Regarding EV demand, we have not found any paper focusing on the goal proposed in this paper, which 

is to predict energy consumption over a week. However, there are studies focused on charging demand 

of the EV. In 2023 [64] forecasted the aggregated EV charging demand. They concluded that both 

Seq2Seq and LSTM models are the best options for one step and multiple step forecasting, with 

Seq2Seq being the best option for the latter. In 2023 [65], a medium-term forecast methodology of EV 

charging demand is proposed. The goal of that paper is to predict the demand for charging station 

management, and not the consumption of a specific EV. Regarding energy consumption and demand, 

models such as LSTM, SVM, k-NN, Random Forest, have been widely used when forecasting other 

energy profiles such as electric building consumption [66], photovoltaic generation [67], and others. 

As a result, we have tested LSTM, SVM and Random Forest models in order to determine which is the 

best model choice for this particular problem. 

 

3.1.2. Forecasting models 

In this section, the forecasting algorithms chosen for testing in our use case have been described. In 

terms of the prediction of the location of the vehicle, a widely used model in the literature has been 

implemented: Long Short Term Memory recurrent neural network (LSTM RNN). For the prediction of 

energy consumption, we have performed a comparison between the Support Vector Machine (SVM), 

Random Forest (RF) and LSTM models.  

3.1.2.1. Long Short Term Memory Recurrent Neural 

Network (LSTM RNN) 

A LSTM model belongs to the so called family of Recurrent Neural Network (RNN). A Recurrent Neural 

Network (RNN) is a type of neural network architecture designed for processing sequences of data. 

The basic idea of an RNN is to use the information from previous time steps to influence the processing 

of the current time step. This makes RNNs particularly effective for tasks where context or temporal 

dependencies are important, such as natural language processing, speech recognition, and time series 

prediction. While RNNs are powerful for capturing sequential dependencies, they have some 

limitations, particularly in handling long-term dependencies. RNNs can be challenging to train on tasks 

that involve long sequences due to the vanishing gradient problem. Training may become slow or even 

fail to converge. The vanishing gradient problem is a challenge that occurs during the training of deep 

neural networks. The weights of the cells are computed through backpropagation, and the gradients 

which modify these weights are calculated with respect to a loss function. The vanishing gradient 

problem arises when these gradients become extremely small as they are propagated backward 

through the layers of the network. As a result, the weights of the earlier layers receive very small 

updates, and their learning process slows down. Long Short-Term Memory (LSTM) networks, are an 

extension of RNNs designed to address these limitations. LSTMs address the vanishing gradient 



 

Deliverable 4.2  

Forecasting tool and algorithm advancement V1.0 

  

 

 
Page 36 of 91 

 
 

   

problem by introducing a more sophisticated memory cell that can store information for long 

durations. These networks have separate input, forget, and output gates that control the flow of 

information into, out of, and within the memory cell, allowing them to selectively update and forget 

information. RNN and LSTM mathematical formulations have been explained extensively in the 

literature including in many of the references provided previously [61] [62]. Check the publication from 

Alex Shertinsky covering both general description of RNNs and LSTMs [68]. Also, see the original 

manuscript from Sepp Hochreiter and Jurgen Schmidhuber [69]. 

3.1.2.2. Random Forest 

A Decision Tree is a supervised machine learning model used for both classification and 

regression tasks. It is a tree-like structure where each internal node represents a database-

breaking decision based on the value of a particular feature in the dataset, each branch 

represents the outcome of the decision, and each leaf node represents the final decision or the 

predicted outcome. Decision trees are popular due to their simplicity, interpretability, and ease 

of visualization. The decision tree algorithm determines the optimal splitting criteria at each 

node based on the training data, so the users do not need to specify the rules or decisions at 

each node; rather, the algorithm learn these patterns from the provided data.  

A Random Forest (RF) is a classifier and regression model that operates by constructing a 

multitude of decision trees, and gives as an output the modal (classification) or mean 

(regression) value of the individual decision trees output. In the case of a Random Forest, the 

process involves building an ensemble of decision trees, where each tree is trained on a random 

subset of the data and random subset of the features. Amongst the benefits of using a Random 

Forest over individual Decision Trees, (1) the random forest excels in robustness (it is less prone 

to overfit), and (2) the RF model returns a measure of feature importance in the dataset.  

The concept of decision trees has roots in the field of statistics. One notable milestone was the 

development of the Iterative Dichotomiser 3 algorithm by Ross Quinlan [70], which popularized the 

use of decision trees for classification tasks.  As for Random Forest, the algorithm was introduced by 

Leo Breiman in 2001 [71]. 

3.1.2.3. Support Vector Machine 

A Support Vector Machine (SVM) is a supervised machine learning algorithm primarily known 

for their use in classification tasks, but they can also be applied to time series forecasting 

problems. As Corinna Cortes and Vladimir Vapnik explain in the original manuscript [72], “the 

SVM maps the input vectors into some high dimensional feature space Z through some non-

linear mapping chosen a priori“ (see also the full manuscript for the mathematical formulation). 

In a classification problem, the main idea behind SVM is to find the optimal hyperplanes that 

maximize the margin between the output classes, the classes being the possible values. There 

are different strategies in order to determine these hyperplanes, primarily, One-vs-One (OvO), 

or One-vs-All (OvA). The latter is the one preferred in most cases due to computational 

complexity and overall performance. 



 

Deliverable 4.2  

Forecasting tool and algorithm advancement V1.0 

  

 

 
Page 37 of 91 

 
 

   

In order to use a SVM for time-series forecasting, the formulation needs to treat the time series 

forecasting problem as a regression problem, where the goal is to predict a continuous output 

(e.g., the future values of a time series). The SVM regression model aims to find a hyperplane 

in the feature space that best fits the relationship between the input features and the 

continuous target variable. This hyperplane is used to make predictions for new, unseen data 

points, providing an estimate of the numeric output. 

3.1.3. KPIs for the Forecasting Models 

In this section, we are going to introduce the metrics used to evaluate the forecasting algorithms. 

Balanced accuracy has been used to evaluate the Location Forecasting model, while Root Mean 

Squared Error (RMSE) and Mean Average Percentage Value (MAPE) have been used to evaluate the 

energy consumption forecasting model. 

3.1.3.1. Balanced accuracy 

Balanced Accuracy is a performance metric used to evaluate the classification accuracy of a model. It 

is an extension of the traditional accuracy metric and takes into account the distribution of classes in 

the dataset. Let 𝑻𝑷 be the number of true positives, and 𝑭𝑵 the number of false negatives. The 

sensitivity is the proportion of actual positive instances correctly predicted by the model. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 

Specificity is the proportion of actual negative instances correctly predicted by the model. It is 

calculated as  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
, 

where 𝑇𝑁 is the number of true negatives, and 𝐹𝑃 is the number of false positives. Finally, the 

balanced accuracy metric is given by: 

𝐵𝐴 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦

2
. 

The key idea behind balanced accuracy is to give equal importance to both positive and negative 

classes, preventing the metric from being overly influenced by the class with more instances. 

In our case, we are dealing with the non-binary variable 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛. The average value of the Balanced 

Accuracy metric for every possible output value is considered: 

𝐵𝐴 = ′ =  ∑
𝐵𝐴𝑙
𝑛

𝑙∈ℒ

  

Where 𝐵𝐴𝑙  is the balanced accuracy for the location 𝑙, and 𝑛 is the number of locations. 
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3.1.3.2. Root mean squared error 

The Root Mean Squared Error (RMSE) is a commonly used metric to measure the accuracy of a 

regression model. It provides a measure of the average magnitude of the errors between predicted 

and actual values, and it's particularly useful when the errors are expected to be normally distributed 

𝑅𝑀𝑆𝐸 = √
1

𝑇
∑(𝑦𝑡 − �̂�𝑡)

2

𝑇

𝑡=1

,  

where 𝑇 is the number of observations of the observed variable 𝑦𝑡, and �̂�𝑡 is the predicted value. 

The RMSE is expressed in the same units as the variable being measured, which makes it interpretable 

and easy to compare to the scale of the original data. Lower RMSE values indicate better model 

performance, as they represent smaller average errors between predicted and actual values. 

 

3.1.3.3. Mean absolute percentage value 

The Mean Absolute Percentage Value (MAPE) is an accuracy metric used to assess the quality in 

regression problems. Usually it is defined as follows: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑|

𝑦𝑡 − �̂�𝑡
𝑦𝑡

|

𝑇

𝑡=1

, 

where, as before, 𝑇 is the number of observations of the observed variable 𝑦𝑡, and �̂�𝑡 is the predicted 

value. 

MAPE is not suitable for observed variables 𝑦 that includes the zero value in its domain. However, as 

the aim of our proposed forecasting method is to predict trip energy consumption, the zero division is 

not real problem. 

3.1.4. Prediction of weekly trip profile through EV location 

This model solves a classification model for knowing the location of the vehicle in the following 

timesteps. 

The input data for the EV location forecasting algorithm is summarised in the following Table 3. Time 

(hour and minutes) information it has been transformed through the cosine and sine functions: each 

pair (𝑡𝑠𝑖𝑛, 𝑡𝑐𝑜𝑠) represents a bijective relation with time, this gives the opportunity to create a 

continuous and cyclic transformation of time. On the other hand, we dichotomized Month and 

Weekday variables, i.e. we created dummy variables to indicate each class. For instance, from 

Weekday variables we created 6 different variables defined as follows: 

𝑊𝑒𝑒𝑘𝑑𝑎𝑦𝑖 = {
1       𝑖𝑓 𝑊𝑒𝑒𝑘𝑑𝑎𝑦 = 𝑖,
0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

The remaining day is represented by the absence of the first 6 days, 𝑊𝑒𝑒𝑘𝑑𝑎𝑦𝑖 = 0 ∀𝑖 ∈ {0,… , 5}.  
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Moreover, we selected temporal information of the independent variable to capture a possible time 

dependency between the observed information one week and one day before.  

The model input is a matrix with 2016 rows, equivalent to one week of information with its respective 

columns, and the output is a vector containing 288 values, which corresponds to one day of 

information. In order to obtain the whole week of forecasting information, the day ahead predictions 

are repeated seven times adding predicted labels as inputs in the following iteration. This procedure 

is adopted due to computational limitations: when predicting a whole week, the input size usually 

increases and the Tensorflow dataset could grow too large to be handled with the available computer 

memory.  

Table 3. Weekly EV location prediction summary table. 

Metadata 
Granularity This dataset consists of trip events, and so, they are not found at any given 

frequency. The precision with which we can find separate events is seconds. 

Historicity 1 year (from July 2013 to July 2014) 

Input width* 2016 

Output width* 288 

*This variable indicates that every instance of the algorithm uses one week (2016 timesteps) to 
predict one day (288 timesteps). The algorithm is called 7 times in order to predict one entire 
week. 

Training dataset 
Training time 
window 

9 months  

Training loss 
indicator 

Sparse Categorical Crossentropy  

Features Description Domain 

𝑚𝑜𝑛𝑡ℎ Month. 𝑚𝑜𝑛𝑡ℎ ∈ [1,… ,12] 

𝑤𝑒𝑒𝑘𝑑𝑎𝑦 Day of the week. Holiday days are labelled as 
Sunday. 

𝑤𝑒𝑒𝑘𝑑𝑎𝑦 ∈ [0,… ,6] 

𝑡𝑠𝑖𝑛 Transformation of the hour through the sin 

function: 𝑡𝑐𝑜𝑠 = sin(𝜋 ·
(ℎ𝑜𝑢𝑟+

𝑚𝑖𝑛𝑢𝑡𝑒

60
)

24
)   

Where ℎ𝑜𝑢𝑟 and 𝑚𝑖𝑛𝑢𝑡𝑒 are the hour and 
minute of the respective timestep 𝑡. 

𝑡𝑠𝑖𝑛 ∈ [−1,1] 

𝑡𝑐𝑜𝑠 Transformation of the hour through the  cos 

function: 𝑡𝑐𝑜𝑠 = cos(𝜋 ·
(ℎ𝑜𝑢𝑟+

𝑚𝑖𝑛𝑢𝑡𝑒

60
)

24
)   

Where ℎ𝑜𝑢𝑟 and 𝑚𝑖𝑛𝑢𝑡𝑒 are the hour and 
minute of the respective timestep 𝑡. 

𝑡𝑐𝑜𝑠 ∈ [−1,1] 

𝑙𝑡−1 Location in previous timestep 𝑙𝑡−1 ∈ ℒ 

∀𝑙 ∈  ℒ, 𝐼𝑡−288
𝑙  Indicates if the vehicle was in location 𝑙 in the 

same timestep 1 day ago. 
∀𝑙 ∈ ℒ, 𝐼𝑡−288

𝑙 ∈ {0,1} 

∀𝑙
∈  ℒ, 𝐼𝑡−2016

𝑙  
Indicates if the vehicle was in location 𝑙 in the 
same timestep 7 days ago. 

∀𝑙 ∈ ℒ, 𝐼𝑡−2016
𝑙 ∈ {0,1} 
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The loss function used for the training is Sparse Categorical Crossentropy, which is commonly used in 

the training of neural networks for multi-class classification tasks. It takes two sets of probabilities as 

input: the predicted probabilities (output of the neural network) and the true class labels represented 

as integers (not one-hot encoded). It is commonly used when dealing with problems where there are 

more than two classes, and the classes are mutually exclusive (each instance belongs to exactly one 

class). 

For each instance in the dataset, it computes the cross-entropy loss between the predicted 

probabilities and the true class labels. The cross-entropy loss measures the dissimilarity between the 

predicted probability distribution and the true distribution.  

Let 𝑦𝑖,𝑡, represent the predicted probability distribution for class 𝑖 in timestep 𝑡, and 𝑦𝑡𝑟𝑢𝑒,𝑡 represent 

the true class labels (integers), the formula for Sparse Categorical Crossentropy (SPC) is: 

𝑆𝑃𝐶 =  −
1

𝑇
∑(∑log(

𝑒𝑦𝑖,𝑡

∑ 𝑒𝑦𝑗,𝑡𝑗
) · 𝜒𝑖,𝑡

𝑖

)

𝑡

 

Where 𝜒𝑖,𝑡 is given by: 

𝜒𝑖,𝑡 = {
1, 𝑖𝑓 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑟𝑢𝑒 𝑐𝑙𝑎𝑠𝑠 𝑖𝑛 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 𝑡

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

3.1.5. Prediction of EV trip energy consumption 

This algorithm aims to determine the energy consumption for all the trips detected by the location 

forecasting algorithm.  

Given an speficic expected EV trip called 𝑡𝑟𝑖𝑝, it is determined by its origin and final stand location 

(𝑜𝑠𝑡𝑎𝑛𝑑 , 𝑓𝑠𝑡𝑎𝑛𝑑 , respectively)  and the trip duration 𝑡𝑟𝑖𝑝𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛. The goal of this algorithm is to obtain 

a forecast of the energy consumption of the EV in kWh. Due to data limitations, these are the only 

features included, but it is expected that adding weather conditions such as precipitation, 

temperature, and also traffic conditions would be a nice addition to the dataset. In an exhaustive 

implementation of the proposed algorithms, the input trip duration, 𝑡𝑟𝑖𝑝𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, should be provided 

by the location forecasting proposed in Section 3.1.4. 

As previously mentioned, Month and Weekday information are dichotomized. In addition, continuous 

variables are standardized, Equation (1),  in order to obtain inputs within similar domain.  

𝑥𝑡
∗  =

𝑥𝑡 − �̅�

𝑠𝑡𝑑(𝑥)
, (1) 

where 𝑥𝑡
∗ is an observation of variable 𝑥.  �̅� represents the mean value of variable 𝑥 and 𝑠𝑡𝑑(𝑥) refers 

to the standard deviation of the variable. 

Table 4. EV trip energy consumption prediction summary table. 

Metadata 
Granularity This dataset consists of trip events, and so, they are not found at any given 

frequency. The precision with which we can find separate events is seconds. 

Historicity 1 year (from July 2013 to July 2014) 
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Input width* 50  

Output width* 1 

*This variable indicates that every instance of the algorithm uses the 50 previous trips as input, to 
predict the trip consumption of the next trip. The algorithm is launched N times, where N is the 
number of trips predicted for the following week. 

Training dataset 
Training time 
window 

9 months  

Training loss 
function 

Root mean squared error  

Features Description Domain 

𝑚𝑜𝑛𝑡ℎ Month. 𝑚𝑜𝑛𝑡ℎ ∈ [1,… ,12] 

𝑤𝑒𝑒𝑘𝑑𝑎𝑦 Day of the week. Holiday days are labelled as 
Sunday. 

𝑤𝑒𝑒𝑘𝑑𝑎𝑦 ∈ [0,… ,6] 

𝑡𝑟𝑖𝑝𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 Trip duration in seconds. [s] 𝑡𝑟𝑖𝑝𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ≥ 0  

𝑜𝑠𝑡𝑎𝑛𝑑 Origin stand. 𝑜𝑠𝑡𝑎𝑛𝑑 ∈ ℒ 

𝑓𝑠𝑡𝑎𝑛𝑑 Final stand. 𝑓𝑠𝑡𝑎𝑛𝑑 ∈ ℒ 
𝑡𝑠𝑖𝑛 Transformation of the hour through the sin 

function: 𝑡𝑐𝑜𝑠 = sin(𝜋 ·
(ℎ𝑜𝑢𝑟+

𝑚𝑖𝑛𝑢𝑡𝑒

60
)

24
)   

Where ℎ𝑜𝑢𝑟 and 𝑚𝑖𝑛𝑢𝑡𝑒 are the hour and 
minute of the respective timestep 𝑡. 

𝑡𝑠𝑖𝑛 ∈ [−1,1] 

𝑡𝑐𝑜𝑠 Transformation of the hour through the  cos 

function: 𝑡𝑐𝑜𝑠 = cos(𝜋 ·
(ℎ𝑜𝑢𝑟+

𝑚𝑖𝑛𝑢𝑡𝑒

60
)

24
)   

Where ℎ𝑜𝑢𝑟 and 𝑚𝑖𝑛𝑢𝑡𝑒 are the hour and 
minute of the respective timestep 𝑡. 

𝑡𝑐𝑜𝑠 ∈ [−1,1] 

Target output Description Domain 

𝑡𝑟𝑖𝑝𝑐𝑜𝑛𝑠 Energy consumption for the trip. [kWh] 𝑡𝑟𝑖𝑝𝑐𝑜𝑛𝑠 ≥ 0  
 

3.2. User Smart Model: Medium-term optimization 

approach for scheduling EV charging sessions 

We aim to develop and test an optimal charging scheduler for Electric Vehicle (EV) users. The model is 

designed to consider the weekly trips with the energy consumption associated with each trip and the 

EV’s location forecasted in Section 3.1. The model time horizon will be extended to one week. In this 

context, the charging sessions schedule will be determined from the point of view of EV owner, for this 

reason we are also going to refer to it by the name of User Smart Model. The algorithm will be designed 

to make decisions such as to partially charge an EV if the vehicle has enough energy to accommodate 

upcoming trips without impacting driver needs. The model will consider both economic and battery 

health trade off among weekly charging sessions, and equally important the following theoretical 

proposal will be able to be applied to an arbitrary time horizon.  
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3.2.1. State of the Art 

In recent years the number of Electric Vehicles (EV), either fully electric (BEV) or Plug-in Hybrid (PHEV), 

has increased significantly. China, the United States and European countries are the ones where the 

EVs have the greatest presence [73].  

Different articles have been published to cover different challenges that these vehicles represent: 

power system from infrastructure and energy generation point of view [74] [75] [76], battery 

degradation [77] [78], flexibility [79] [80] or environmental impact [81]. 

Another widely studied concern involves managing the energy needs of EVs, however most approaches 

have focused either on the Charging System Operator (CSO) perspective or the integration of the EV 

at house grid level. In this case, the CSO focuses on reducing energy costs related on the charging 

station and the energy demands of its customers. Common strategies involve shifting charges to 

minimize the total energy bill [82] [83], reducing peak power demand [84] [85], and mitigating the 

environmental impacts or energy generation [86] [87]. However, in the proposed approach a set of 

locations where the EV could be parked is considered, each of them with their own (dis)charging 

characteristics and energy price policies. These considerations should help the EV to find the most 

profitable strategy, deciding what to do at each all possible charging stations where the EV will be 

parked in the future time horizon. 

On the other hand, mid-term Battery Electric Vehicle energy management has limited studied, 

whereas research focused on CSO profit [88]. Exploring long-term optimization from the Electric 

Vehicle owner perspective opens new opportunities:  

 Selective vehicle charging. If the trip pattern of the vehicle user is known, the model can make 

informed decisions, not only about partial charges but also about abstaining from charging 

when it is neither economically nor technically optimal, thereby optimizing the overall charging 

strategy through the optimization horizon.   

 Battery degradation reduction. Battery degradation is influenced by various factors such as 

driving behaviour, State of Charge (SOC), charging power, among others. A medium-term 

horizon and the selective vehicle charging sessions offer an opportunity to optimize the 

charging power levels and maintain the EV battery within the most beneficial SOC and power 

ranges for battery health. 

 Greater economic savings potential.  A charging algorithm capable of determining the 

minimum energy required for next trips during expensive energy price periods can save energy 

costs by waiting for cheaper periods to charge. 
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3.2.2. List of Parameters and Variables 

In this section, we are presenting the parameters and variables used to describe the optimisation 

model. See the detailed description in Table 5 and Table 6. 

Table 5. List of parameters. 

  

Symbol Description [Units] Domain 
Sets 

𝒯 Set of time steps 𝒯 = {1,… , 𝑇} 
ℒ Set of charging station locations  ℒ =  {1,… , 𝐿} 
ℒ Subset of forecasted locations as parking point for the EV ℒ ⊆ ℒ 

Matrices 

R 
Vector T of positions in ℒ,  0 if the EV is driving (Temporary 
list of stop locations) 

{𝑅𝑡} ∈ ℒ ∪ {0} 

Λ𝑏𝑢𝑦 
matrix T×|ℒ | expressing the energy cost for each location l 
in ℒ and time t.  [€/kWh]  

{𝜆𝑡.𝑙
𝑏𝑢𝑦
} ∈ ℝ+ 

Λ𝑠𝑒𝑙𝑙 Matrix T×|ℒ | expressing the energy compensation/sell price 
for each location l and time t.  [€/kWh]  

{𝜆𝑡.𝑙
𝑠𝑒𝑙𝑙} ∈ ℝ+ 

𝑃𝐶𝑚𝑎𝑥 
Vector of size L expressing the maximum charging power at 
location l in ℒ. [kW]  

{𝑃𝑙
𝐶𝑚𝑎𝑥}

∈ ℝ+ ∪ {0} 

𝑃𝐶𝑚𝑖𝑛 
Vector of size L expressing the minimum charging power at 
location l in ℒ [kW]  

{𝑃𝑙
𝐶𝑚𝑖𝑛}

∈ ℝ+ ∪ {0} 

𝑃𝐷𝑚𝑎𝑥 
Vector of size L expressing the maximum discharging power 
at location l in ℒ. [kW]  

{𝑃𝑙
𝐷𝑚𝑎𝑥}

∈ ℝ+ ∪ {0} 

𝑃𝐷𝑚𝑖𝑛 
Vector of size L expressing the minimum discharging power 
at location l in ℒ. [kW] 

{𝑃𝑙
𝐷𝑚𝑖𝑛}

∈ ℝ+ ∪ {0} 
Vectors 

𝐷𝑡
𝑒𝑣 EV energy  consumption [kWh] ℝ+ ∪ {0} 

Scalars 

Δt Time step duration [hours] ℝ+ 
M An arbitrary large constant 𝑀 ≫ 0 

𝛽 EV energy demand security parameter [1,2) 

𝛼𝐶  
SOC threshold where EV maximum charge power decreases 
[%] 

[0,1] 

𝛼𝐷 
SOC threshold where EV maximum discharge power 
decreases [%] 

[0,1] 

𝐸𝐵 Battery capacity [kWh] ℝ+ 

 𝜂𝑐ℎ Battery charging efficiency [%] (0,1) 

𝜂𝑑𝑐ℎ Battery discharging efficiency [%] (0,1) 

𝐶ℎ𝑒𝑎𝑙𝑡ℎ 
Penalization cost for an extra battery health reduction 
during V2G discharging [€/kWh] 

ℝ+ 

𝑆𝑂𝐶̅̅ ̅̅ ̅̅  Maximum SOC value [%] [0,1] 

𝑆𝑂𝐶 Minimum SOC value [%] [0,1] 

𝑆𝑂𝐶0 Initial SOC [%] [0,1] 

𝑆𝑂𝐶𝑇 Minimum SOC at the time window end [%] [0,1] 
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It is important to note that in the position vector 𝑅(𝑡), a value of 0 means the EV's active state, i.e., 

the vehicle is in motion or driving. Consequently, the initial position (0) within the vectors, defining 

charging point characteristics, always holds the value 0. This location (0) acts as a constructed charging 

point, deliberately set with all its parameters, such as boundaries and prices, at zero.  

Table 6. List of variables. 

Symbol Description [Units] Domain 
𝑝𝑡
𝑐 Charging power to the EV [kW] ℝ+ ∪ {0} 

𝑝𝑡
𝑑 Discharging power from the EV [kW] ℝ+ ∪ {0} 

𝑢𝑡
𝑐 Active charge indicator {0,1} 

𝑢𝑡
𝑑 Active discharge indicator {0,1} 

𝑠𝑜𝑐𝑡 State Of Charge of the EV [0,1] 

𝑠𝑜𝑐𝑡
𝑠𝑙𝑎𝑐𝑘 Slack variable to fulfil SOC’s lower bound [0,1] 

 

3.2.3. Objective function 

The objective function is, 

𝐹(𝑝𝑐 , 𝑝𝑑 , 𝑠𝑠𝑙𝑎𝑐𝑘) =  ∑((Δ𝑡 ⋅ (𝑝𝑡
𝑐 ⋅ 𝜆𝑡,𝑅(𝑡)

𝑏𝑢𝑦
− 𝑝𝑡

𝑑(𝜆𝑡,𝑅(𝑡)
𝑠𝑒𝑙𝑙 − 𝐶ℎ𝑒𝑎𝑙𝑡ℎ) ) ))

⏟                            
𝐴

+  M ⋅ st
slack⏞      
𝐵

)

𝑡∈𝒯

. 

 

(2) 

Where, expression A in 𝐹(𝑝𝑐 , 𝑝𝑑 , 𝑠𝑠𝑙𝑎𝑐𝑘) refers to the energy bill resulting from purchasing (𝑝𝑡
𝑐) and 

selling/injecting (𝑝𝑡
𝑑) energy to charging station 𝑅(𝑡), and a discharging penalization cost, 

𝐶ℎ𝑒𝑎𝑙𝑡ℎ [€/𝑘𝑊ℎ], which is calculated as:  

𝐶ℎ𝑒𝑎𝑙𝑡ℎ =
𝐶𝐵

𝐿𝐵
, 

where 𝐶𝐵refers to battery cost in €/kWh, and 𝐿𝐵 is the expected lifetime of the battery in terms of 

cycles. 𝐶ℎ𝑒𝑎𝑙𝑡ℎ cost is introduced to mitigate the extra battery degradation impact when discharging 

the EV due to V2G activities. Expression B in 𝐹(𝑝𝑐 , 𝑝𝑑 , 𝑠𝑠𝑙𝑎𝑐𝑘) sets the behaviour of  st
slack variables 

that we will discuss in Section 3.2.4.1. 

3.2.4. Constraints 

3.2.4.1. State of Charge constraints 

We defined the State of Charge (SOC) balance between time steps in equation (3), and the different 
SOC limitations in equations (4) to (7).  
 

𝑡 = 1 (3) 
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𝑠𝑜𝑐𝑡 =

{
 
 

 
 

𝑆𝑂𝐶0 +
Δ𝑡 (𝑝𝑡

𝑐𝜂𝑐ℎ −
𝑝𝑡
𝑑

𝜂𝑑
) − 𝐷𝑡

𝑒𝑣  ⋅ 𝛽

𝐸𝐵

𝑠𝑜𝑐𝑡−1 +

Δ𝑡 (𝑝𝑡
𝑐𝜂𝑐ℎ −

𝑝𝑡
𝑑

𝜂𝑑
) − 𝐷𝑡

𝑒𝑣  ⋅ 𝛽

𝐸𝐵

 ∀𝑡 ∈ 𝒯 ∖ {1} 

𝑠𝑜𝑐𝑡 ≤ 𝑆𝑂𝐶̅̅ ̅̅ ̅̅  ∀𝑡 ∈ 𝒯 (4) 

𝑠𝑜𝑐𝑡 + 𝑠
𝑠𝑙𝑎𝑐𝑘 ≥ 𝑆𝑂𝐶 ∀𝑡 ∈ 𝒯 (5) 

𝑠𝑜𝑐𝑡 >  0 ∀𝑡 ∈ 𝒯 (6) 
𝑠𝑜𝑐𝑇 ≥ 𝑆𝑂𝐶𝑇 ∀𝑡 ∈ 𝒯 (7) 

 

Variable 𝑠𝑡
𝑠𝑙𝑎𝑐𝑘, in Constraint (5), prevents infeasibilities in the Optimization problem when the EV is 

plugged into a charger with a SOC lower than the minimum allowed (𝑆𝑂𝐶). As we have seen in the 

Objective function, because we are weighting the variable by 𝑀, when an EV arrives below 𝑆𝑂𝐶 the 

first action will be to charge the EV until this value.  

3.2.4.2. Power constraints 

The following set of constraints express the bounds for (dis)charging according to both charger and EV 

limitations. 

𝑝𝑡
𝑐 ≤ 𝑢𝑡

𝑐 ⋅ 𝑃𝑡,𝑅(𝑡)
𝐶𝑚𝑎𝑥 ∀𝑡 ∈ 𝒯 (8) 

𝑝𝑡
𝑐 ≥ 𝑢𝑡

𝑐 ⋅ 𝑃𝑡,𝑅(𝑡)
𝐶𝑚𝑖𝑛 ∀𝑡 ∈ 𝒯 (9) 

𝑝𝑡
𝑑 ≤ 𝑢𝑡

𝑑 ⋅ 𝑃𝑡,𝑅(𝑡)
𝐷𝑚𝑎𝑥 ∀𝑡 ∈ 𝒯 (10) 

𝑝𝑡
𝑑 ≥ 𝑢𝑡

𝑑 ⋅ 𝑃𝑡,𝑅(𝑡)
𝐷𝑚𝑖𝑛 ∀𝑡 ∈ 𝒯 (11) 

𝑢𝑡
𝑑 + 𝑢𝑡

𝑐 ≤ 1 ∀𝑡 ∈ 𝒯 (12) 
  

Moreover, it is well known that EV cannot always charge or discharge at maximum speed because of 

SOC values, represented in Figure 14–other factors can also affect this behaviour, such us battery 

temperature, however they are not considered on this approach. For this reason, the following 

constraints are considered: 

 

𝑝𝑡
𝑐 ≤

{
 
 

 
 
𝑃𝑡
𝐶𝑚𝑎𝑥

 
+
𝑃𝑡,𝑅(𝑡)
𝐶𝑚𝑖𝑛 − 𝑃𝑡,𝑅(𝑡)

𝐶𝑚𝑎𝑥

  

1 − 𝛼
(
𝑠𝑜𝑐𝑡 + 𝑆𝑂𝐶0

2
− 𝛼)

𝑃𝑡
𝐶𝑚𝑎𝑥

 
+
𝑃𝑡,𝑅(𝑡)
𝐶𝑚𝑖𝑛 − 𝑃𝑡,𝑅(𝑡)

𝐶𝑚𝑎𝑥

  

1 − 𝛼
(
𝑠𝑜𝑐𝑡 + 𝑠𝑜𝑐𝑡−1

2
− 𝛼)

 

 

𝑡 = 1 

(13) 

∀𝑡 ∈ 𝒯 ∖ {1} 
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𝑝𝑡
𝑑 ≤ {

𝑃𝑡,𝑅(𝑡)
𝐷𝑚𝑎𝑥 𝑆𝑂𝐶0

𝛼𝐷

𝑃𝑡,𝑅(𝑡)
𝐷𝑚𝑎𝑥 𝑠𝑜𝑐𝑡−1

𝛼𝐷

 

𝑡 = 1 

(14) 

∀𝑡 ∈ 𝒯 ∖ {1} 

 

 

3.2.5. Optimization problem 

After introducing the objective function and the set of constraints, the proposed User Smart Model 

will be set as the optimization problem and defined as follows: 

Min 𝐹(𝑝𝑐 , 𝑝𝑑 , 𝑠𝑠𝑙𝑎𝑐𝑘) 

Subject to,  

 Equations (3), (4), (5), (6),(7), (8), (9), (10), (11), (12), (13),  (14)  

Which corresponds to a Mixed Integer Linear Optimization Problem (MILP). 

3.3. Use case: Oporto Taxi Dataset 

In this section, a general description of the use case is provided.  

The Oporto Taxi dataset [59] [60] was released in context of the Porto European Conference on 

Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2015 

edition) and the Kaggle competition Taxi Trajectory Prediction (I).  

This dataset provides a whole year of information, from July 1st 2013 to June 30th 2014, of 442 taxis 

and their trips. Moreover, the timestamp is registered, the call type data --differentiating between 

central dispatched, specific taxi station or other kind of calls--, and the origin stand identifier.  The 

original dataset includes the GPS coordinates (WGS84 format) recorded every 15 seconds. This GPS 

track will help to obtain trip distance, duration, mean speed, and to estimate the energy demand.  

𝜶𝑫 

𝜶𝑪 𝑷𝑪𝒎𝒂𝒙 

 

𝑷𝑫𝒎𝒂𝒙 

 

Figure 14. Charge and discharge maximum power profiles. Scratched zones show feasible areas of both, charging 

and discharging power variables, 𝒑𝒕
𝒄  and 𝒑𝒕

𝒅 respectively. 
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Due to the high number of possible starting and ending trip locations –any street is suitable for being 

a beginning or ending point of a taxi trip–, it is assumed that all trips start and finish in taxi stations. 

Another assumption is that all taxi stations have a charging point per parking slot. Under these 

considerations, the data is prepared as it is showed in Figure 17. All sub-processes appearing in Figure 

17 are described below: 

 Process 1: The GPS location is recoded every 15 seconds, this provides an approximation of 

the distance –considering geodetic distance– and travelled time. These two measurements 

help us to obtain the taxi mean speed. Even though the shortest path between two points do 

not exactly fit with the idea of EV trip, as records are registered every 15 seconds, final distance 

should approximately match with the real trip distance. 

  

Process 2: During data processing procedure, the vehicle model is assumed to be the Nissan 

Leaf e+ N-connecta model1 (Spanish version), which features a battery size is 62 kWh. The 

62kWh battery size is assumed to be reasonable because it aligns closely with the mean value 

of sampled EV battery capacities available today, according to the European Alternative Fuels 

Observatory (EAFO) [89]. External temperature is assumed to be 25oC. Energy consumption 

calculations are also based on Nissan Leaf e+ autonomy2, utilizing distance travelled and mean 

speed obtained from process 1.  

 

 Process 3: The original dataset is processed such that a trip starts and finishes at specific taxi 

stands and each trip can include several travel to different locations. However, the original 

dataset lacks identification of whether a taxi ends its trip at a stand or not. To solve this 

ambiguity, we established a criterion: if the j-th trip starts at stand A and the k-th trip starts at 

stand B, where j<k, and there are no intermediate trips starting at any other stand, then we 

define trip (j,k) as starting at stand A and concluding at stand B. Figure 15 depicts this concept, 

denoting Stands A and B as potential starting and ending points for merged trips. 

 

It is also assumed that if the time gap between trips 𝑖 and 𝑖 + 1 (where 𝑗 < 𝑖 < 𝑖 + 1 < 𝑘) 

exceeds 45 minutes, we consider that trip 𝑖-th has finished at an unidentified position. This 

unidentified position is presumed to lack chargers. Following the example in Figure 15, if the 

time interval between Trip 2 and Trip 3, is under 45 minutes, they will be combined. However, 

if this time interval exceeds the 45-minute threshold, it is assumed that the car stopped at a 

                                                           
1 https://configurador.nissan.es/leaf 
2 https://leaf-range-calculator.nissan.es/es/spain/autonomy 

Figure 15. Graphical representation of Oporto's raw dataset. Car pics were obtained from Flaticon. 
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location without being possible to charge the vehicle. Figure 16 represents the application of 

this assumption, building on the initial situation shown in Figure 15.  

 

After processing the data, 84 taxis were selected to train and test the algorithms. The dataset used to 

forecast the next week trajectories was formatted to time series. Table 7 shows the time series data 

that the forecast tool expects, where location label “-1” stands for on the road situation. This final 

database includes time, one previous week of Location and Energy Consumption variables.  

Table 7. From trips register to time series profile of a single taxi. 

Starting 
time 

Starting 
Location 

Ending 
Time 

Ending 
Location 

Energy 
Consumed 

 Date Location  Energy 
Consumed 

 

20/08/2023 
07:30 

A 
1.5 

20/08/2023 
07:45 

-1 
1.5 

20/08/2023 
08:00 

-1 
1.5 

20/08/2023 
07:45 

A 
20/08/2023 
10:15 

B 15 kWh … … 
 

 20/08/2023 
10:00 

-1 
1.5 

20/08/2023 
10:15 

B 
1.5 

Figure 16. Trip Merging at Taxi Stands and Identifying Unidentified Stops: Using Figure 15 Scenario with the 
Assumption of 'Between Trips Time 1' < 45 and 'Between Trips Time 2' ≥ 45. Car pics were obtained from Flaticon. 
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Figure 17. Oporto's Data set pre-processing schematic. 
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3.4. Results 

In this section results are presented for each of the three different proposals explained previously. To 

code the Forecasting models, we used Python and, more precisely, libraries TensorFlow and Scikit-

Learn. Meanwhile, we used GAMS and solver CPLEX to obtain the optimization results. The forecasting 

models have been launched on a an Intel(R) Core(TM) i7-7800X CPU with 32GB of RAM, and the 

optimization has been done using an Intel(R) Core(TM) i5-8265U with 8GB of RAM. 

3.4.1. Forecasting Performance 

The results of our study have revealed outcomes that, while falling short of initial expectations, provide 

valuable insights into the complexities of EV mobility forecasting. Recognizing this, we present both 

the strengths and limitations inherent in our methodology. Most notably, given the nature of the data 

set (i.e., predicting taxi travel), which can have significantly more locations that need to be considered 

than for private vehicle transport, predicting the location and energy consumption during that travel 

is more challenging than for typical private vehicle transport. Without having access to private vehicle 

transport data we had to use the taxi data. As will be described, we envision a marked performance 

improvement when applying this method to personal private vehicle data.  

The location forecasting algorithm has been tested against the historic mobility dataset of several 

different taxis (two of which are explored in detail below). The high computational time required for 

the training of the LSTM RNN has been inconvenient when trying to obtain the model for each taxi. 

This high computational requirement is explained by the fact that the LSTM Network is trained with 9 

months of 5-minute frequency data. Moreover, the LSTM Network is trained in such a manner that 14 

days is the input data to predict 1 day. The number of features is linearly dependant on the number of 

locations, 

𝑁𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 21 + 2 · 𝑁𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠, 

The first 21 fixed features are: 

 7 binary variables indicating day of the week, 

 12 binary variables indicating month, 

 2 continuous variables indicating hour of the day 𝑡𝑠𝑖𝑛, 𝑡𝑐𝑜𝑠.   

Each location has two features, 𝑙𝑡−288 and 𝑙𝑡−2016, which indicate the location of the car in the same 

timestep of the previous day in the previous week, respectively. The training of the NN was limited to 

10 epochs in order to set a balanced value between computational time and performance of the 

model.  
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Table 8. Results of the location forecasting model. 

Training Taxi A Taxi B 
Training accuracy 0.75 0.50 

Training loss (Sparse 
Categorical Crossentropy) 

1.99 1.93 

Training time per epoch 
[minutes] 

59 45 

Test Taxi A Taxi B 

Balanced Accuracy 0.53 0.17 

Number of real trips / Number 
of predicted trips 

77 / 34 70 / 14 

 

The two taxis showed similar training time, with the accuracy of the model stabilizing rapidly (epoch 3 

already showed almost identical accuracy and loss values as epoch 10). The model have shown 

difficulties to adapt to the nature of the taxi data. This is confirmed when using the model against the 

test dataset. The total number of predicted trips and the accuracy values for the locations were very 

low, which we consider unacceptable for commercial implementation. Our study employed a one-hot 

encoding for the GPS coordinate of the vehicles, along with a series of assumptions regarding the trips 

of the taxis that introduced limitations to the time series.  

Regarding the trip energy consumption forecasting model, the three algorithms developed all had 

relatively low accuracy as shown in Table 9. The main reason is that the method for combining trips in 

order to limit locations to only taxi stands means that the energy consumed during trips is highly 

unpredictable since it could involve a single sub-trip or many sub-trips. As a result, simplifications to 

improve results for the location forecasting have negatively affected the energy consumption 

forecasting. Again, this is unlikely to be an issue with private transport thus the methods developed 

here still have merit. 
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Table 9. Results on the trip consumption model. 

Training 
SVR Taxi A Taxi B 

Training accuracy (RMSE) 0.58 0.56 

Training time per epoch 0.76s 0.93s 

Random Forest Taxi A Taxi B 

Training accuracy (RMSE) 0.49 0.53 

Training time per epoch 14 s 17 s 

LSTM Taxi A Taxi B 

Training accuracy (RMSE) 0.62 0.46 

Training time per epoch 3s  3s 

Test 

SVR Taxi A Taxi B 

RMSE 0.63 0.59 

MAPE 2.18 0.91 

Random Forest Taxi A Taxi B 

RMSE 0.56 0.58 

MAPE 2.11 2.62 

LSTM Taxi A Taxi B 

RMSE 0.89 0.76 

MAPE 1.70 1.28 

 

The training time is greatly reduced in this model given that the data structure is far more simple, the 

model is simply obtaining a target variable from the previous 50 records, whereas in the location model 

the algorithm is trained to use a full week of data to predict one day of target locations. 

3.4.2. Optimization Performance 

In this section the performance of the proposed Medium-term optimization approach for scheduling 

EV charging sessions (called User Smart Model from now on), described in Section 3.2, is evaluated. To 

facilitate a comparative analysis, we introduce two additional charging procedure: 

 Immediate charging Model: Vehicles are promptly charged upon connection to any charging 

point, aiming for full battery charge as soon as possible. 

 CSO Smart charging Model: Upon plugging in, the algorithm ensures a minimum SOC of 85% 

by the end of the charging session. This allows for charge shifting and energy price 

optimization. 

The CSO Smart Model does not consider the discharging energy penalization cost, 𝐶ℎ𝑒𝑎𝑙𝑡ℎ, in the 

objective function, because of the Charging System Operator is not incentivized to care about a user’s 

battery degradation. Additionally, it is interesting to remark that User Smart Model is neither obligated 

to charge the vehicle every time it is parked at a taxi station nor to fully charge the vehicle, or to 

guarantee a minimum SOC, at the end of the charging session.  
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For testing purposes, a sample of 84 different taxis are tested using these three models. Moreover, 

each vehicle and model initialization includes four different state of charge values: 30%, 50%, 70% and 

90%. Finally, given the number of different usage curves and the considered initial State of Charge 

values, a total of 366 tests were performed. 

To facilitate comparison, we defined four Key Performance Indicators (KPIs) listed below: 

 Total Energy Purchase Cost [€]: How much the user paid for the energy they used to charge 

their vehicle, also considering compensation for discharging the battery (i.e., bidirectional 

charging).  

 

 Mean Energy Purchase Cost [€/kWh]: This indicator provides a measure of the average cost 

of energy, taking into account both the price and the quantity of energy consumed. The KPI is 

defined according to Expression (16). 

 

 Battery Degradation associated cost [€]: The calculation methodology described in FLOW 

deliverable 4.3, Section 4.2 is applied to obtain the Battery Degradation Cost. 

 

 Total Cost [€]: Sum of the energy bill and the associated battery degradation cost. It is 

calculated as defined in Equation 16, where 𝐵𝐷𝑡𝑎𝑥𝑖 represents the battery degradation cost. 

Differences between the smart charging model are also used to compare the results from the three 

models, as illustrate the expression (187):  

 

         Δ𝐼𝑀(𝐾𝑃𝐼) = 𝐾𝑃𝐼
𝑆𝑚𝑎𝑟𝑡 − 𝐾𝑃𝐼𝐼𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 

Δ𝐶𝑆𝑂(𝐾𝑃𝐼) =  𝐾𝑃𝐼
𝑆𝑚𝑎𝑟𝑡 − 𝐾𝑃𝐼𝐶𝑆𝑂 

 

  (187) 
 

 

and the percentage of change (PC) 

 

𝑃𝐶𝐼𝑀(𝐾𝑃𝐼) =   
Δ𝐼𝑀(𝐾𝑃𝐼)

|𝐾𝑃𝐼𝐼𝑀|
⋅ 100 

  (198) 
 

 

𝑇𝐸𝐶𝑡𝑎𝑥𝑖 = ∑Δ𝑡 ⋅ 𝑝𝑡
𝑐 ⋅ 𝜆𝑡,𝑅(𝑡)

𝑏𝑢𝑦

𝑡∈𝒯

  [€] 

 

(15) 

 

�̅�𝑡𝑎𝑥𝑖 = {

0                                                     𝑇𝐸𝐵𝑡𝑎𝑥𝑖 =  0,

∑ Δ𝑡 ⋅ 𝑝𝑡
𝑐 ⋅ 𝜆𝑡,𝑅(𝑡)

𝑏𝑢𝑦
𝑡∈𝒯

∑ Δ𝑡 ⋅ 𝑝𝑡
𝑐

𝑡∈𝒯
                 𝑇𝐸𝐵𝑡𝑎𝑥𝑖 >  0

 
(16) 

 

𝑇𝐶𝑡𝑎𝑥𝑖 =  𝐵𝐷𝑡𝑎𝑥𝑖 +∑Δ𝑡 ⋅ (𝑝𝑡
𝑐 ⋅ 𝜆𝑡,𝑅(𝑡)

𝑏𝑢𝑦
− 𝑝𝑡

𝑑 ⋅ 𝜆𝑡,𝑅(𝑡)
𝑠𝑒𝑙𝑙 )

𝑡∈𝒯

   [€] 

 

(176) 
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𝑃𝐶𝐶𝑆𝑂(𝐾𝑃𝐼) =  
Δ𝐶𝑆𝑂(𝐾𝑃𝐼)

|𝐾𝑃𝐼𝐶𝑆𝑂|
⋅ 100 

 
The following list collects important assumptions that were used in the analysis:  

 All taxi stations have available chargers, i.e. a taxi can always plug-in when it arrives.  

 The charger characteristics are the same across taxi stations (i.e., charging power limits). 

 The vehicles have a battery capacity of 62 kWh.  

 The initial datetime for each test set is randomly selected to recreate different scenarios, with 

the condition that a minimum of 15% of the sampled data must show an EV usage, i.e. driving. 

That is done considering values from EV Consumption dataset variable – blue line in Figure 18. 

 The energy prices data correspond to Spain’s Voluntary price for the small consumer (PVPC3) 

from 2022 to 2023, while the Oporto data span July 2013 to June 2014. To match these, we 

adjusted the date range for the prices to match the Oporto data (i.e., maintaining weekdays 

and weekend periods). For instance, if the historical data is from 2014-06-24 01:35 to 2014-

06-31 01:30, the selected energy price date indices are in the interval 2023-06-20 01:00 - 2023-

06-27 01:00, maintaining the same weekdays (from Thursday to Thursday).   

Due to the impact of the initial State of Charge on Immediate Charge and CSO Smart models, it is 

important to quantify and compare the performance of the User Smart Model and the charging limited 

models. For this reason, when comparing Immediate Charging and CSO Smart models against the User 

Smart Model, the first twenty-four hours horizon period is also analysed. Including this period 

guarantees that more than 94% of experiments remained in a taxi station, i.e. charge availability, for 

at least 1 hour.  

Table 10. Parameter values in optimisation tests. 

Symbol Description [Units] Value 
Sets 

𝒯 Set of time steps 𝒯 = {1,… , 2016} 
ℒ Set of locations that the EV could be parked ℒ = {1,… , 68} 

ℒ 4  Subset of forecasted locations as parking 
point for the EV 

{0,1,… , 68} 

Scalars 

Δt Time step duration [hours] 5/60 

M An arbitrary large constant 109 
𝛽 EV energy demand security parameter 1 

𝛼𝐶  
SOC threshold where EV maximum charge 
power decreases [%] 

0.9 

𝛼𝐷 
SOC threshold where EV maximum discharge 
power decreases [%] 

0.3 

𝐸𝐵 Battery capacity [kWh] 62 

                                                           
3 https://www.esios.ree.es/en/analysis/1739?compare_indicators=1001 
4 Each of the 84 taxis have a different subset of possible locations, ℒ ⊆ ℒ, for this reason, in Table 4 this set 
includes all the stations visited by any of the 84 taxis. 
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𝑆𝑂𝐻 
Actual State of Health [%]. Parameter used to 
obtain degradation. 

95 

𝐶𝑠𝑒𝑙𝑙  Penalization cost when discharging [€/kWh] 0.053 

 𝜂𝑐ℎ Battery charging efficiency [%] 0.9 

𝜂𝑑𝑐ℎ Battery discharging efficiency [%] 0.9 

𝑆𝑂𝐶̅̅ ̅̅ ̅̅  Maximum SOC value [%] 1 
𝑆𝑂𝐶 Minimum SOC value [%] 0.2 

𝑆𝑂𝐶0 Initial SOC [%] 0.3, 0.5, 0.7, 0.9 

𝑆𝑂𝐶𝑇 Minimum SOC at the time window end [%] 0.7 

𝑃𝐶𝑚𝑎𝑥 
Maximum charging power when the EV is 
plugged in [kW] 

22      ∀𝑡 ∈ 𝒯  

𝑃𝐶𝑚𝑖𝑛 
Minimum charging power when the EV is 
plugged in [kW] 

1       ∀𝑡 ∈ 𝒯 

𝑃𝐷𝑚𝑎𝑥 
Maximum discharging power when the EV is 
plugged in [kW] 

11     ∀𝑡 ∈ 𝒯 

𝑃𝐷𝑚𝑖𝑛 
Minimum discharging power when the EV is 
plugged in [kW] 

0.3    ∀𝑡 ∈ 𝒯 

 

Figure 18 presents the main time resolved inputs of the optimisation problems (provided in table form 

in Table 10). The orange zones represent time periods when the vehicle can be charged (positive) or 

discharged (negative). Energy values are obtained considering the relation 𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑚𝑎𝑥 = Δ𝑡𝑃
𝐶𝑚𝑎𝑥. 

In addition, the blue line represents the energy consumed by the EV when driving. 

 

 

Figure 18. First three days EV trip energy consumption (blue line), the charging energy (positive) or 
discharging (negative) limits (orange), the purchase energy cost (solid black) and injection compensation 

(dashed black) for a single taxi.  
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3.4.2.1. User Smart Model results analysis 

Testing the User Smart Model across 336 scenarios with various initial SOC values and EV usage 

patterns revealed interesting outcomes. Table 11 presents the distribution of KPIs throughout a weekly 

timeframe and Figure 19 displays a graphical representation of weekly KPIs obtained in each studied 

model discharging, and being compensated. 

Table 11. User Smart Model KPIs across all simulations.  
Energy 

Purchase 
Cost [€]  

Mean Energy 
Purchase 

Cost [€/kWh] 

Degradation 
[€] 

Total Cost 
[€] 

Mean 12.15 0.14 8.35 19.61 

Std. Dev. 10.04 0.09 0.49 10.79 

Minimum 0.79 0.03 6.87 4.12 

25% 4.66 0.06 8.11 11.69 

Median 8.80 0.11 8.41 16.30 

75% 16.94 0.19 8.67 25.00 

Maximum 54.88 0.38 9.49 63.76 

 

Considering the 366 total scenarios for each implementation model, a box and whisker plot is used to 

develop an understanding for the performance of the three different implementation models (Figure 

19). To answer this, we conducted a paired Wilcoxon Signed Rank Test, with the null hypothesis states 

no mean value difference.  

To analyse statistical differences between the weekly distributions of the three implementation 

models, a paired Wilcoxon Signed Rank Test was conducted assuming the null hypothesis that there is 

no mean value difference. All User Smart Model possible comparisons presented p-values less than 

0.0001, leading to the rejection of the null hypothesis. In other words, we can say that the User Smart 

Model significantly reduces all the KPIs considered, when it is compared with Immediate Charge Model 

and CSO Smart Model. 
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Figure 19. KPI distribution through the sample of the 336 simulations for each model considered. Panel A: 
Energy Bill, Panel B: Mean energy purchase cost, Panel C: Associated degradation cost, Panel D: Total Cost. 

 

3.4.2.2. Individual taxi analysis 

Figure 20 shows the performance of a vehicle and the related energy prices considering an initial State 

of Charge of 30% over a week. In these curves, we observe prolonged periods where the User Smart 

Model either refrains from charging or just charges a minimum amount of energy for subsequent trips. 

Equation (5) permits a SOC value below the minimum required, but incurs an economic penalty 

denoted by M. As a result, the algorithm consistently aims to charge the vehicle with enough energy 

to guarantee a SOC level above or equal to the minimum SOC (𝑆𝑂𝐶) at the beginning of next charging 

session. Compared with the Immediate Charging Model, smart models rarely fully charge the battery 

A B 

C D 
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except in specific situations —Subfigures D, G, and H—, and all excess energy is injected into the 

distribution network. It is interesting to compare the behaviour of the CSO Smart Model and the User 

Smart Model (panels D and F). The User Smart Model provides users with information that they need 

to make more strategic multi-day decisions. While the CSO Smart Model may allow for bidirectional 

strategies to generate additional revenue, the value of that service is severely limited if the vehicle 

must achieve a specific SOC value by the end of the charging sessions (i.e., 85% for the CSO Smart 

Model). Notably, the average SOC for the User Smart Model in the example below is 54% while for the 

CSO Smart Model it is 83% and for immediate charge is 98%. While allowing dynamic SOC levels at the 

end of the charging session can provide value, as in the User Smart Model example, this also creates a 

situation where in an operational environment, a buffer needs to be built into the estimation process 

to ensure that the driver’s mobility needs are met in the case of variability in their driving patterns. 

Again, following the example in Figure 20, in terms of total energy cost, the User Smart Model resulted 

in 5.75€ whereas the other models obtained 15.08€ (Immediate Charge Model) and 13.24€ (CSO Smart 

Model). Additionally, the CSO Smart Model discharged more energy from the EV battery and hence 

the one who charged more energy –User Smart Model has charged 119.53kWh and injected 41.1kWh, 

the CSO Smart Model 144.32kWh and 52.87kWh respectively, and Immediate Charge Model charged 

89.4kWh. The more conservative behaviour when discharging energy and the no obligation of reaching 

a specific desired SOC by the end of each charging sessions permitted the User Smart Model to perform 

better in Degradation associated cost, reaching a value of 8.23€. In contrast, the CSO Smart Model 

obtained the worst result with 9.75€ (Immediate Charge Model: 9.69€). Considering the 

charged/discharged energy and battery degradation, the User Smart Model obtained a Total Cost value 

of 9€, whereas CSO Smart and Immediate models scored 17.82€ and 24.77€, respectively. Finally, there 

was a remarkable reduction in the mean energy purchase cost, from 0.17€/kWh in the Immediate 

Charge Model to 0.048€/kWh in the User Smart Model (CSO: 0.092 €/kWh).  

Figure 21 displays a second set of charging profiles, this time with an initial State of Charge of 70%. The 

User Smart Model and CSO Smart Model exhibit similar behaviour from panel A to panel D, but just as 

with the results in Figure 20, the User Smart Model algorithm limits its SOC – only charging the vehicle 

once from panel F to panel H – while the CSO Smart Model is forced to charge three times to maintain 

the rule of 85% of SOC at the end of each charging session. Specifically, the full week energy purchased 

cost for the User Smart Model is 5.22€, whereas for CSO Smart Model it is 7.47€. The Degradation 

associated Cost in CSO Smart Model is higher than the User Smart Model (CSO: 9.13€, User: 8.85€), 

because the CSO Smart Model charged and injected more energy. In general terms, the Immediate 

Charge Model offered poor results, resulting in 22.74€ for the Total Cost KPI while the others resulted 

in 12.98€ and 10.88€ for CSO and User Smart Model, respectively. Finally, the mean energy cost was 

0.21€/kWh, 0.09€/kWh and 0.074€/kWh for Immediate Charge, CSO Smart Model and User Smart 

Model, respectively.  
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H 

Figure 20. Immediate Charge, CSO and User Smart models comparison over a week-ahead optimization grouped by 
periods of twenty-four hours. Taxi 20000267 between 12-11-2013 06:00 and 19-11-2013 05:55, whereas energy prices 

correspond to the period 07-12-20 
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3.4.2.3. User Smart Model versus Immediate Charge 

Model 

The results, summarized in Table 12, showcase the mean paired differences (User Smart Model – 

Immediate Charge Model) for KPIs over both a week and a 24 hour period, in brackets the standard 

deviation. More precisely, negative values point out the advantage of using the User Smart Model. 

These values consistently depict reductions when considering the User Smart optimization Model. The 

large standard deviation can be explained be the presence of extreme values.  

Table 12. One-week and first twenty-four hours mean KPIs difference (User Smart Model vs Immediate 
Charge Model) obtained over the whole set of simulations. 

 

Combining results from Table 12 and Table 13, we can conclude the advantages of using the User Smart 

Model against the Immediate charging procedure. The greater reduction in first-twenty four hours can 

be explained by the initial State of Charge values, which are coercing the Immediate Model to charge 

a large amount of energy (iSOC of 30% implies charging 43kWh as soon as possible). These results are 

consistent with findings from Section 3.4.2.2 (User Smart Model analysis). 

 

 

 

 
Energy 

Purchase Cost 
[€] 

Mean Energy 
Purchase Cost 

[€/kWh] 

Degradation 
[€] 

Total Cost 
[€] 

1 Week mean Difference 
(std. dev.) 

-11.48 (5.59) -0.1 (0.04) -1.1 (0.48) -13.46 (5.29) 

1st Day mean Difference 
(std. dev.) 

-6.31 (4.95) -0.06 (0.05) -0.26 (0.21) -6.79 (5.1) 

H 

Figure 21. Immediate Charge, CSO and User Smart models comparison over a week-ahead optimisation grouped by 
periods of twenty-four hours. Taxi 20000596 between 22-02-2014 02:00 and 01-03-2014 01:55, whereas energy prices 

correspond to the period 25-02-2023 02:00 
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Table 13. One-week and first twenty-four hours mean KPIs percent change (User Smart Model vs Immediate 
Charge Model) obtained over the whole set of simulations.  

Energy 
Purchase Cost 

[€] 

Mean Energy 
Purchase Cost 

[€/kWh] 

Degradation 
[€] 

Total Cost 
[€] 

1 Week mean Percentage 
Reduction (std. dev.) 

-53.27 (14.66) -45.16 (17.80) -11.62 (5.03) -42.52 (10.3) 

1st Day mean Percentage 
Reduction (std. dev.) 

-78.08 (25.69) -56.36 (39.21) -17.7 (13.45) -66.17 (32.3) 

 

3.4.2.4. User Smart Model versus CSO Smart Model 

The CSO Smart Model presents an advantage against the CSO Smart Model when considering energy 

price arbitrage within each charging session, but the EV should finish the connected time period with, 

if it is possible, a minimum SOC of 85% for every stop location.  

Table 14 shows the mean difference between User Smart Model and CSO Smart Model, in both weekly 

and daily periods. The User Smart Model presented better results and the findings indicate that the 

majority of energy bill savings occurs during the first twenty-four hours (likely attributed to 

equilibration of the initial SOC conditions). The increase of the Degradation cost can be explained by 

the calendar ageing effect on battery health. Holding batteries at a lower SOC will reduce the impact 

of the calendar ageing and the User Smart Model allows for the SOC to be lower than the limit imposed 

for the CSO Smart Model – 85% at the end of each charging session – thus resulting in a greater 

reduction for the User Smart Model.  

Table 14. One-week and first twenty-four hours mean KPIs difference (User Smart Model vs CSO Smart 
Model) obtained over the whole set of simulations.  

Energy 
Purchase 
Cost [€] 

Mean Energy 
Purchase Cost 

[€/kWh] 

Degradation 
[€] 

Total Cost 
[€] 

1 Week mean Difference 
(std. dev.) 

-5.35 (2.98) -0.04 (0.02) -0.88 (0.49) -5.66 (2.9) 

1st Day mean Difference 
(std. dev.) 

-4.21 (3.91) -0.03 (0.04) -0.22 (0.19) -4.44 (4.06) 

 

In terms of relatives changes, Table 15 shows the percent change when moving from CSO Smart Model 

to User Smart Model. It is remarkable the standard deviation values when considering the first twenty-

four hours window, this could be explained by: (1) occasionally the CSO Smart Model could take 

advantage of the energy stored in the battery by discharging it and charge it afterwards, however the 

User Smart Model is not encouraged to do that due to the degradation factor included in the objective 

function; (2) The CSO Smart Model is compelled to charge the battery up to the 85% of SOC, meanwhile 

the User Smart Model could decide to limit charging.  

At the same time, the relative difference of Degradation decreased from one day analysis to one week 

analysis. This could be explained, as before, by the rules of CSO Smart Model. Moreover, when the 
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initial State of Charge is low, the Immediate Charge and the CSO Smart models must make an effort to 

charge the battery and, hence, a higher degradation is obtained.  

On average, the Mean Energy Purchase Cost is reduced around 26% for the whole week. Although the 

standard deviation is still large, the sample distribution does not present a remarkable extreme value. 

The first twenty-four hours presents almost a 50% percent reduction; however, the deviation value is 

considerably larger, but explained by the 122 samples from User Smart Model that did not charge the 

vehicle. 

Table 15. One-week and first twenty-four hours mean KPIs percent change (User Smart Model vs CSO Smart 
Model) obtained over the whole set of simulations.  

Energy 
Purchase 
Cost [€]  

Mean Energy 
Purchase Cost 

[€/kWh] 

Degradation 
[€] 

Total Cost 
[€] 

1 Week mean Percentage 
Reduction (std. dev.) 

-35.39 (18.02) -26.49 (16.56) -9.5 (5.2) -24 (11) 

1st Day mean Percentage 
Reduction (std. dev.) 

-70.31 (33.64) -45.40 (42.38) -15 (12.4) -54.48 (50.3) 

 

3.5. Summary and future work 

This report describes the tools and methodologies that have been implemented in order to obtain the 

optimal management for the charging session of an EV, considering the future usage of the vehicle. 

For this purpose, we have developed a forecasting model aimed at predicting EV locations for the 

upcoming week and an optimization model designed to optimize battery management based on these 

forecasts. A user can use this tool when they arrive at a charging station to automatically select a 

desired SOC and even predict the likely departure time. These forecasted values can be used as the 

default for smart charging and bidirectional charging strategies. This has the potential to simplify the 

user experience and increase potential flexibility offering from EVs. 

Our exploration into the forecasting model revealed inherent challenges in accurately predicting the 

future locations of EVs. Regarding the location forecast, the complexity of spatial-temporal dynamics, 

combined with external factors influencing EV mobility which lack in our input data, contributed to 

poor forecast results. The nature of the Taxi data, with a large number of possible drop-off/pick-

up/charging locations, results in a poor fit with a time-series classification approach. The developed 

methods are likely to have marked performance improvement when considering a private transport 

vehicle, which often consider fewer locations; however, the authors could not find appropriate private 

transport data to use for this analysis. Additionally, the assumptions made to reduce the number of 

locations in an effort to reduce forecasting error for the location prediction have negatively impacted 

the trip energy consumption prediction by significantly increasing variability in the energy 

consumption per trip (which can comprise few or many subtrips). The implications of these 

assumptions are that for every trip between known locations, the amount of time, distance, and 

energy consumption can be very different. The balance between simplifying the dataset with location 

clustering, and limiting the negative impact on the forecast for trip energy consumption, was difficult 

for the taxi data, but could be limited or avoided by using personal vehicle data.  
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In contrast, the optimization model has shown success in effectively managing EV battery usage based 

on accurate energy consumption forecasts. Across the 336 different scenarios, the results obtained 

with the proposed optimal energy management (User Smart Model) have been compared with two 

other management strategies, Immediate Charge and CSO Smart Model, and the User Smart Model 

shows an improvement in all studied KPIs: purchase energy cost, mean purchase energy value, battery 

degradation associated cost, and total cost. 

While the optimization model has demonstrated that with an accurate forecast of weekly energy 

consumption, it can improve charge management, this highlights the need to further study the 

forecasting model. The improvement of the forecasting model is a critical step in unlocking the full 

potential of the optimization model in real-life scenarios. 

While the proposed models have been used in the literature for other different but related forecasting 

activities with better results, the authors think that the nature of the input data (i.e., the use of taxi 

data instead of private transport) plays a significant role. For future work, the proposed methods 

should be applied to personal transport data to confirm that this will improve the results.  

In conclusion, our study serves as a foundation for future advancements in EV management. The 

symbiotic relationship between forecasting and optimization models, particularly as it relates to the 

user-centric approaches, highlights the relationship of accurate predictions and tangible real-world 

applications which can contribute to both economic and environmental sustainability. 

 

4. Day-ahead building EV charging demand 
forecast (EATON) 

The Centre of Intelligent Power (CIP) at Eaton provides day-ahead EV charging demand forecasting 

services to customers and in-house projects. These services aim to provide deeper insights into the 

patterns of EV charging demand loads. 

Since EV charging will significantly increase the load on buildings and grids, accurate EV charging power 

forecasting can help the building administrators better utilise energy storage units, optimise energy 

usage, and plan for the risks associated with peak power. 

The EV charging demand forecasting algorithms developed by Eaton CIP have been designed with a 

practical approach in mind. Specifically, statistical and ensemble methods have been prioritised for 

their simple structures, minimal need for feature engineering, and effectiveness in typical forecasting 

tasks. However, machine learning and deep learning (DL) based models and feature engineering 

techniques are also being experimented with to improve the performance of EV load forecasting. 

This section will summarise the research and experiments conducted for selecting and evaluating EV 

load forecasting models for day-ahead building EV charging demand forecast. 
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4.1. State of the Art 

4.1.1. Forecast Models 

Forecast models analyse historical time series data to predict future development of energy demand. 

These models capture the relationship between past and future values using parameters, taking into 

account various aspects of a time series, such as seasonal patterns or current energy output.  

EV charging demand forecast models are adaptations of general forecasting models, designed to 

capture the specific data characteristics of the energy domain. When it comes to EV charging demand 

forecasting, it is challenging to find a universally accepted method that suits all possible application 

scenarios. This is because EV charging behaviours can vary under different scenarios. Therefore, our 

literature review has prioritised models that have low input requirements and have been extensively 

researched. As we progress with the review, we will gradually shift our focus to machine learning and 

deep learning-based models. These models possess powerful learning and predicting capabilities, 

which may further enhance EV charging demand forecasting abilities. 

Statistical models 

Statistical models have been widely used for univariate time series forecasting and have been 

successfully applied to EV charging demand forecasting. These models have minimal input 

requirements, as they only consider the historical data of the time series and do not require other 

complex factors that influence EV charging power. However, incorporating exogenous predictors into 

statistical models is also supported and can help improve the accuracy of the forecasts. 

AutoRegressive Integrated Moving Average (ARIMA) has been widely used to forecast time series in 

production and as a benchmark. In [90], the authors proposed time-series seasonal ARIMA models for 

predicting aggregated EV charging station load. Their main objective was to identify the most suitable 

seasonal ARIMA model for various scenarios, without taking into account exogenous variables. 

Another ARIMA model, presented in [91], predicts the electric power consumption of conventional 

electrical load and the charging demand of EVs. This model utilises daily driving patterns and distances 

as inputs to estimate the expected charging load profiles, and then employs ARIMA to forecast future 

charging demand. 

Additionally, when dealing with EV charging demand data, it is important to consider and analyse 

seasonal patterns and recurring patterns and exploit available features when designing forecasting 

models. [92] combines two kinds of Seasonal AutoRegressive Integrated Moving Average with 

eXogenous regressors model (SARIMAX) together with three kinds of training-forecasting procedures 

to identify the combination that provides the best long-term forecasts. SARIMAX is an extension of the 

ARIMA model, and the authors include both seasonality and exogenous variables (e.g., holidays and 

lagged energy consumption data) in their models to enhance the forecasting ability and accommodate 

for non-stationary data.  

It should be noted that while the examples above utilise ARIMA or its variants as the forecasting 

models, other statistical models can also be used for predictions. Finding the best model for forecasting 

is not a one-size-fits-all approach and depends on personal knowledge and preference. 
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Machine Learning Models 

To address the complexities associated with factors that impact EV demand forecasting, machine 

learning techniques have been introduced to leverage their powerful learning capabilities. One 

advantage of ML models is their ability to capture hidden non-linear dependencies between load and 

exogenous influences, enabling them to better understand and learn patterns from the input data. 

Random Forest (RF) and Gradient Boosting have recently demonstrated their effectiveness in load 

forecasting. Gradient Boosting produces a prediction model in the form of an ensemble of weak 

prediction models, such as simple decision trees, that make minimal assumptions about the data. 

During training, new models are trained to minimise the loss function of the previous models using 

gradient descent, typically using mean squared error or cross-entropy. [93] applied supervised 

machine learning to a dataset from the Netherlands and analysed three regression algorithms: 

Random Forest, Gradient Boosting, and XGBoost [94]. They aimed to identify the most accurate 

algorithm and the main influencing parameters. They found that XGBoost performed the best under 

their experimental conditions, with the most influential parameters being the time of day at which the 

charging sessions start and the total energy supplied. [95] evaluated various machine learning 

methods, including Decision Tree, Support Vector Machines (SVM), and Artificial Neural Network 

(ANN), for EV load forecasting. Their results showed that SVM and ANN generally performed better 

under their experimental settings, but they also had longer training times. 

Compared to statistical models, ML models are generally more complex and require more time for 

training. Additionally, the accuracy potential of an ML model also depends on selecting appropriate 

input variables. While ML models and deep learning-based models have stronger learning abilities, 

they may not necessarily improve forecast accuracy. As indicated in [96], the advantage of one 

forecasting technique over another highly depends on the use-case and the available data. Therefore, 

it is worth conducting research to determine the forecasting models that are suitable for specific 

applications and data, instead of blindly starting with a very complex ML or DL model. 

Deep Learning Models 

Deep learning has a greater ability than the previous two categories to discover inherent features. It 

can represent the internal features of EV charging demand data without any prior knowledge, and it 

achieves superior prediction performance when well designed. The following table presents some 

examples of deep learning-based forecasting models for EV charging demand prediction.  

The reviewed deep learning models show diverse characteristics in terms of inputs, outputs, forecast 

horizon, deep learning techniques, hyperparameter optimisation, evaluation metrics, and feature 

selection. This further highlights the complexities of EV charging demand forecasting and the design of 

DL models. Even though the examples don't use the same deep-learning architectures, they do share 

some similarities: 

1) The input data has more features (than the ones used by the statistical and ML models), and 

the selected features are diverse. 

2) Deep-learning architectures such as Transformer, Encoder-Decoder, and Long Short-Term 

Memory (LSTM) have been used to enhance learning and forecasting abilities. 

3) Hyperparameter optimization and feature selection have been employed to improve the 

performance of forecasting models. 
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Table 16. Examples of deep learning-based forecasting models. 
Reference Datasets Inputs & Output Forecast 

Horizon 

Models Hyperparameter 

optimization 

Evaluation 

Criteria 

Feature 

Selection 

[97] Electric 

Vehicle 

Charging 

Station Data 

of Boulder, 
Colorado [98] 

Inputs: 

1) Aggregated EV charging 

load (kW/day); 

2) Binary weekend (0 or 1); 

3) Min temperature (◦F) 

Time Resolution:1 day 

Outputs: 

Aggregated EV charging load 

7,30,60, and 

90 days 

ahead 

 

(forecast 

steps: 

7,30,60,90 

1-day 

steps) 

Transformer (compar

ed with ARIMA, 

SARIM, RNN, and 

LSTM)  

 

 

- RMSE, MAE - 

[99] EV Charging 

data within 

the campus of 

Georgia Tech, 

Atlanta, USA 

(not publicly 

available) 

Inputs 

1) Charging duration 

2) Energy (kWh) 

3) Greenhouse Gas (GHG) 

savings (kg) 

4) Gasoline savings (gallons) 

5) cost incurred (USD) 

Outputs: 

Charging demand of energy 

(kWh). 

 

- 

 

EMD–AOA-

DLSTM (EMD: 

empirical mode 

decomposition; AOA: 

arithmetic 

optimization 

algorithm; DLSTM: 

deep long-short term 

memory) 

arithmetic 

optimization 

algorithm (AOA) 

MAE, MSE, RMSE 

and accuracy of 

prediction (Apre) 

empirical 

mode 

decomposit

ion (EMD). 

[100] synthetic data 

generated 

based on 

statistical info 

(not publicly 

available) 

Inputs: 

historical data including: 

1) arrival time 

2) departure time 

3) trip length 

Outputs: 

Aggregated Plug-in Electric 

Vehicles (PEVs) load (kW) 

 

1 day Recurrent Artificial 

Neural Networks 

(ANN) with 

Levenberg 

Marquardt (LM)  

(Compared with 

Monte Carlo 

Simulation, MCS) 

- MAE, MAPE, 

RMSE 

- 

[101] a real-world 

dataset 

containing 

593 charging 

stations in 

Germany, 

covering 

August 2020 

to December 

2020 

(not publicly 

available) 

 

Time 

Resolution:15 

mins 

Inputs: 

1) Occupation (which is a 

binary flag indicating a 

charging record of the 

charging station at the time t) 

2) Day of the week 

3) Time of day 

4) Mean Occupation 

5-6) Quantiles (0.25 and 0.75). 

Data is collected at the 

charging outlet level. Time 

Resolution:15 mins 

Outputs: 

occupation of a charging 

station/outlet for each time 

point of the prediction 

horizon 

8 hours 

 

(36 binary 

outputs 

with a 15-

min 

interval) 

Deep Fusion of 

Dynamic and Static 

Information model 

(DFDS) which has an 

Encoder-Decoder 

structure and a 

Fusion Component  

 

baselines: Historical 

Average, K-Nearest 

Neighbours, Random 

Forest, Logistic 

Regression, Support 

Vector Machine, 

Gru+Fully, Connected 

Sequence-2-

Sequence. 

- Precision, Recall, 

F1-Score 

Manual 

analysis (by 

removing 

individual 

features 

from the 

DFDS 

model and 

measuring 

the 

difference 

in the 

forecasting 

performanc

e.) 

[102] EV charging 

data from the 

open data 

portal [103] of 

the city of 

Dundee, UK. 

 

Data includes 

Start and 

finish 

date/time, 

KWh (amount 

of electricity) 

used, Charge 

point ID, 

Location, and 

Type of 

Charger. 

 

Time 

Resolution:1 

min 

Inputs: 

1) Time of day 

2) Day of week 

3) Weekday/weekend binary 

indicator 

4) Average charging 

occupancy rate profile for 

weekday/weekend 

5) Past charging occupancy 

states 

 

Time Resolution:10 min (the 

dataset has been processed 

and bucketed with a 10-min 

interval) 

Outputs: 

a vector of binary values 

representing the multistep 

forecasting of the charging 

occupancy states 

10 mins - 6 

hours 

 

(forecast 

steps: 10 

min is one 

forecast 

step, and 6 

hours 

ahead 

forecast 

generates 

36 binary 

values) 

a new mixed long 

short-term memory 

neural network 

incorporating both 

historical charging 

state sequences and 

time-related features 

for multistep discrete 

charging occupancy 

state prediction. 

 

 

Baselines include 

logistic regression, 

SVM, random forest, 

and Adaboost 

Grid Search MAE, F1 Score Manual 

Selection 

by 

comparing 

three 

groups of 

features  



 

Deliverable 4.2  

Forecasting tool and algorithm advancement V1.0 

  

 

 
Page 69 of 91 

 
 

   

 

4.1.2. Datasets 

Table 17. Examples of datasets for EV charging sessions forecasting models. 
Name Application 

Scenarios  
Description 

Electric Vehicle Charging 
Dataset [104] 

Workplace This dataset contains information from 3,395 high-resolution electric vehicle 

charging sessions. The data contains sessions from 85 EV drivers with repeat 

usage at 105 stations across 25 sites at a workplace charging program. 

The workplace locations include facilities such as research and innovation 

centers, manufacturing, testing facilities and office headquarters for a firm 

participating in the U.S. Department of Energy (DOE) workplace charging 

challenge. The data is in a human and machine-readable *.CSV format. The 

resolution of the data is to the nearest second, which is the same resolution as 

used in the analysis of the paper. It is directly importable into free software. 

ACN-Data [105] Workplace ACN-Data exists to help researchers access real data around electric vehicle 
charging. The dataset is made possible by a close collaboration with PowerFlex 
Systems, which operates Adaptive Charging Networks around the United States. 
Each entry in the dataset contains information about a single charging session. 
 
The dataset contains tens of thousands of charging session data from three sites 
over a span of several years. We have selected this dataset for our experiment 
because of its completeness of its data and user-friendly API and web interface 
for downloading data. 
 

Daily Load Transactions for 
Electric Vehicles from SAP 
Labs France [106] 

Workplace & 
Residential 

This dataset corresponds to all EV charging transactions of SAP Labs employees 
France carried out either at their workplace or at home since June 2017.  
 
A transaction is the entire charging operation from start to stop (from insertion 
to removal of the badge, button or cable), including the period of inactivity 
(when charging is complete, but the vehicle is still plugged in). It should be noted 
that this dataset is no longer available for downloading.  
 

Electric Vehicle Charging 
Sessions Dundee [103] 

Public This dataset contains every electric vehicle charging session at Dundee City 
Council owned charge points.  
 
Its data fields include Start and finish date/time, kWh (amount of electricity) 
used, Charge point ID, Location, and Type of Charger. 
 

Electric Vehicle Charging 
Transactions by London 
Borough of Barnet [107] 
 

Public Data showing Electric Vehicle Charging Point Transactions.  
 
Data fields include charging point location, time, total Watt Hours (Wh) and 
connect time. Data measured in Wh. 
 

Electric Vehicle Charging 
Station Energy Consumption 
of Boulder (Colorado, USA) 
[98] 

Public This dataset shows the energy use, length of charging time, gasoline savings and 
greenhouse gas emission reductions from all city-owned electric vehicle charging 
stations.  
 
Data are broken out by charging station name/location, transaction date, and 
transaction start time; 1 row indicates 1 EV charging station transaction. 
 

Electric Vehicle Charging 
Station Usage of Perth & 
Kinross (UK) [108] 

Public These are the datasets for Perth & Kinross Council's EV charging stations under 
the ChargePlace Scotland scheme. It includes anonymous data from each 
individual charging session. 
 

Electric Vehicle Charging 
Station Usage (2011.07-
2020.12) of City of Palo Alto 
[109] 
 

Public This dataset shows the EV Charging Station Usage of City of Palo Alto. 
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Belib' - Charging points for 
electric vehicles - Real-time 
availability [110] 

Public  This dataset contains geo-localised data on real-time availability of Charging 
Points [Bélib'] for electric vehicles, where Belib' represents the network of EV 
charging terminals. It can be used to scrape some data for charging station 
occupancy research. 
 

Electric Chargepoint 
Analysis 2017: Domestics 
[111] 

Residential The dataset contains experimental statistics on the usage of OLEV-funded 
domestic charge points in the UK in 2017. This includes details of charging events 
and the amount of energy supplied. 
 

 

4.2. Methodology 

The research work conducted by the Eaton team is not exhaustive, and initially, we focus on testing 

the categories of models that possess a certain conciseness and capacities. Two categories of 

forecasting models have been evaluated, which are statistical models such (e.g., ARIMA) and ensemble 

models (e.g., Random Forest). The two categories of models and some selected models will be 

introduced in the following sub-sections. 

4.2.1. Experiment Data 

We have selected the ACN-Data [105] as the dataset for our research because it provides relatively 

complete EV charging sessions for workspace scenarios. Our research focuses on forecasting the EV 

charging demand of buildings to optimize energy usage. Therefore, we specifically chose scenarios that 

involve buildings within relatively enclosed environments. Public EV charging stations may exhibit 

different charging demand patterns, and their operators may not prioritise energy usage optimisation 

and electricity bill reduction as much as building administrators do. As a result, public charging stations 

are not within the scope of our current research. 

Data from the Caltech site (Site ID: caltech) is utilised for our experiment. Caltech is a research 

university located in Pasadena, CA, US, and it has 54 EVSEs in its campus garage. Although the site is 

open to the public, the majority of usage comes from faculty, staff, and students. Therefore, it can be 

used to simulate our target application scenario. 

The Caltech dataset consists of 31,424 entries of charging sessions, spanning from April 2018 to 

September 2021. We have converted the charging sessions into the charging power of EV chargers, 

and the transformed data is measured in kilowatts (kW) with a time resolution of 5 minutes. In 

addition, the data are averaged in order to form time series with a 5-min resolution, and the 

aggregated load imposed by EV charging on the grid at the site level is analysed.  

For training models, we reserve the data from 'May 1, 2018' to 'April 30, 2019', and for testing the 

model performance, we use the data from 'July 1, 2019' to 'May 1, 2020'. However, there is a key 

difference between this split and the common train-test-splitting approach. In our case, we use the 

former period to assist some models in hyperparameter tuning, while the latter period is used to 

simulate the training and prediction processes when the models are actually deployed.  

Specifically, for models with parameters that need to be determined in advance, we utilise the data 

from the former period to aid in decision-making. For example, the hyperparameters of seasonal 

ARIMA are tuned using the data between 'May 1, 2018' and 'April 30, 2019'. On the other hand, we 

use the data from the latter period to train the models and make predictions using a moving window. 
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This simulates the deployed version of our forecasting module, where the models are regularly 

updated at certain intervals. Actually, the dataset contains more data than we have actually used. This 

is because we are unsure about the effects of COVID-19 on office attendance policies and EV charging 

behaviours, and we decided to use the data before the middle of 2020. 

Some important settings for our data include: 

1) The aggregated EV charging load at the site level has a 5-min time resolution and it is charging 

power we are going to analyse. 

2) training_resampling_freq = "60T": we aggregate the training data to hourly frequency to suit 

the need of our downstream applications (such as energy usage scheduler) 

3) forecast_resampling_freq = "60T" and forecast_horizon = 24 (in terms of 

training_resampling_freq): the output of the model will be a 24-hour ahead forecast, with 

hourly frequency (i.e., the forecast will be an array containing 24 points) 

4) For each date in the period selected ('July 1, 2019' - 'May 1, 2020'), a model will be trained 

using the days_in_training_history worth of data from the past (12:00 of each date is selected 

as the reference timestamp), and we do forecast for the next 24 hours. 

Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE) have 

been used as the metrics for measuring the performance of forecasting. MSE measures the average of 

the squared differences between the predicted and actual values, providing a comprehensive view of 

a model's accuracy. RMSE is the square root of MSE and is often preferred as it gives a more 

interpretable measure of error. MAE, on the other hand, calculates the average of the absolute 

differences between the predicted and actual values, providing a measure of the average magnitude 

of error. By considering these metrics, we can gain valuable insights into the effectiveness of 

forecasting models and make informed decisions based on the results. 

4.2.2. Models for Experiments 

4.2.2.1. Statistical Models 

The following statistical models from the Python StatsForecast [112] package have been evaluated in 

this experiment: 

- The seasonal naive model is currently used as a benchmark for EV demand forecasting. Along 

with HistoricAverage, they serve as two baseline models for our evaluation. 

- ARIMA is widely used for time series forecasting. In this experiment, we use its automatic 

version for parameter tuning.  

- The CrostonClassic model may not be suitable for this experiment as it is designed for 

forecasting time series with intermittent demand. However, we keep this model due to its 

quick training time. 

- DynamicOptimizedTheta and The Holt-Winters' method are also included to assess their 

performance. 

Seasonal ARIMA 

In time series forecasting, ARIMA is one of the most widely used approaches. ARIMA exploits the 

autocorrelations in the data. An ARIMA model is characterised by 3 terms: p, d, q where, p is the order 
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of the Auto Regressive (AR) term, q is the order of the Moving Average (MA) term, and d is the number 

of differencing required to make the time series stationary. The full ARIMA(p,d,q) model can be written 

as follows. 

�̂�𝑡 = 𝑐 + ∅1𝑦𝑡−1
′ +⋯+ ∅𝑝𝑦𝑡−𝑝

′ + 𝜃1𝜖𝑡−1 +⋯+ 𝜃𝑞𝜖𝑡−𝑞 + 𝜖𝑡 

Where 𝑦𝑡
′ is the d-order differenced tth member of the time series data, p is the maximum lag 

considered in the AR part, and 𝜖𝑡 = 𝑦𝑡 − �̂�𝑡 is the forecast error associated at timestamp t.  c, ∅ and 𝜃 

are the intercept term, coefficients of lagged terms, and coefficients of error terms. They are estimated 

by fitting the model to the data. 

SARIMA (p,q,d)(P,Q,D)[s] is an extended version of the ARIMA model that takes into account 

seasonality in the input data. P, Q, and D are similar to their non-seasonal counterparts p, q, and d 

respectively. They represent the seasonal AR terms, seasonal MA terms, and the order of seasonal 

differencing. Seasonal differencing is performed in a similar way to regular differencing, but instead of 

subtracting consecutive terms, the value from the previous season is subtracted. The seasonal length 

is given by s. 

In our experiment, we aim for our ARIMA model to handle seasonality while maintaining simplicity by 

not incorporating exogenous variables. Therefore, we apply SARIMA to the time series data of 

aggregated EV charging load.  

In our experiments, we utilise the automatic version of AutoARIMA from the python StatsForecast 

package for parameter tuning to select the best model. While we also manually analyse and select 

parameters from ARIMA, the parameter selection process is subjective and may result in different 

models. Therefore, we will solely rely on AutoARIMA for our experiment. 

Holt-Winters’ method 

Holt-Winters’ method, also known as triple exponential smoothing, is an extension of exponential 

smoothing for series that contain both trend and seasonality. Exponential smoothing uses a weighted 

average of all past observations where the weights decrease exponentially into the past, and it is 

suitable for data with clear trends and/or seasonality. 

season_length is set to 24 in our experiments. 

DynamicOptimizedTheta  

The Theta method decomposes the seasonally adjusted data into two "theta lines" and uses different 

techniques to obtain and combine the two theta lines to produce the final forecasts.  

In a standard Theta model, the first theta line removes the curvature of the data to estimate the long-

term trend component. The second theta line doubles the local curvatures of the series to approximate 

the short-term behaviour [113]. Based on the description of [114], the optimised Theta model has 

been shown to be more accurate than other time series forecasting methods, especially for time series 

with complex trends and seasonality. 

The Dynamic Optimised Theta Model was proposed in [113] and it is a state space model that selects 

the best short-term theta line optimally and revises the long-term theta line dynamically. The Dynamic 

Optimised Theta Model generally achieves higher levels of forecasting accuracy than other versions. 
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CrostonClassic model 

It is a method to forecast time series that exhibit intermittent demand. 

Seasonal Naïve 

It is a method similar to the Naïve model uses the last known observation of the same period (e.g., the 

same month of the previous year) to capture seasonal variations. 

HistoricAverage 

It is also known as the mean method, and it uses a simple average of all past observations. We set its 

seasonal length to 24 and use it a benchmark model. 

4.2.2.2 Ensemble Models 

Ensemble methods combine the predictions of multiple base estimators, which are built using a 

specific learning algorithm, to improve generalisability and robustness compared to a single estimator. 

Two well-known ensemble methods, random forest (RF) and gradient-boosted trees are evaluated in 

our experiments. 

Random Forest (RF) 

The Random Forest algorithm is designed for trees, using a perturb-and-combine technique. It creates 

diverse classifiers by introducing randomness in the construction process. The ensemble's prediction 

is the average of the individual classifiers. More specifically, each tree in the ensemble is built from a 

bootstrap sample (drawn with replacement) from the training set. When splitting each node, the best 

split is found from either all input features or a random subset. 

Introducing randomness in these ways reduces the variance of the forest estimator. Individual decision 

trees often overfit due to high variance. The randomness in the forest leads to decision trees with 

somewhat decoupled prediction errors. Averaging these predictions cancels out some errors. Random 

forests achieve reduced variance by combining diverse trees. 

Random Forests implemented by the python package scikit-learn [115] has been used in our 

experiment.  

LightGBM 

Light Gradient Boosting Machine (LightGBM) is a histogram-based gradient boosting algorithm that 

was developed by Microsoft in 2017 [116]. Its main objective is to improve the scalability of boosted 

algorithms and reduce computation times. This algorithm stands out from other gradient boosting tree 

(GBT) algorithms because it constructs trees in a leaf-wise manner instead of a depth-wise manner. 

With the depth-wise strategy, leaves at the same depth are split at the same time, which can result in 

unnecessary splitting of leaves with low information. However, with the leaf-wise strategy 

implemented in LightGBM, only the leaf with the highest information gain is split, which leads to a 

significant enhancement in efficiency. Moreover, LightGBM utilizes a histogram-based strategy to 

group attributes before splitting, which is a faster approach compared to the presorting method used 

by other GBT models. 

The LightGBM implementation by [117] has been used and evaluated in our experiment.  
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4.2.2.3 Pipeline of Transforms 

We apply the scikit-learn Pipeline to the ensemble models to transform the input data before feeding 

it into the models. This allows the ensemble models to better utilise some additional features in the 

input data. The basic steps included in the pipeline are as follows: 

 

Figure 22. Steps in the scikit-learn Pipeline. 
 

The "input_transformer" is used to enrich our univariate dataset with additional features, which will 

be explained in the following content. Then, the "reshape_transformer" ensures that the data fed into 

the regressors have the correct shapes. 

Similar to the technique employed in [118] to obtain the trigonometric characteristics, we convert each 

ordinal time attribute (which is the weekday, hour, and month information coming from each 

timestamp) into 2 features that collectively represent the same information in a non-monotonic 

manner. This approach also ensures that there are no abrupt transitions between the first and last 

values of the periodic range for each sub-feature. 

 

 

Figure 23. Transforms applied within input_transformer. 

 

The LaggedFeatureGenerator is a customised transformer that creates lagged versions of a pandas 

DataFrame column. It is specifically designed to be used in a scikit-learn pipeline to add lagged values 

of a column as additional input features. This allows a model to access more information from the past, 

but it also increases the complexity of the pipelines. 

Additionally, when using time-sensitive cross-validation to select the best num_input_lags (from the 

list [0, 12, 24]) for the two ensemble models, it has been found that num_input_lags=0 leads to better 

performance. This suggests that either our models do not rely heavily on lagged features, or the 

current models cannot fully utilise the lagged features. Since our experiments are exploratory, we 

make num_input_lags=0 for our current experiments.  

4.2.3. Experiment Workflow 

The workflow of our experiments is tightly linked with the split of the experiment data. Figure 22 

explains how we split our data for running our simulations. 
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The selected forecasting models are used to provide EV demand forecasts for the next 24 hours, with 

an hourly frequency. The aggregated EV load data from 'May 1, 2018' to 'April 30, 2019' is utilised to 

tune the hyperparameters of certain models, such as ARIMA and RF. This is done to obtain preliminary 

models that can be directly used for forecasting or require less effort for fine-tuning. 

For automatic forecasting models like AutoARIMA, our application may not allow us to search for the 

best parameters each time or accept a model with changing parameters. In such cases, we run 

AutoARIMA on the aforementioned data period to learn about the (p,q,d)(P,Q,D) parameters. 

AutoARIMA selects the best parameters based on a provided information criterion (AIC, AICc, BIC, or 

HQIC). The function searches for possible model and seasonal orders within the given constraints and 

selects the parameters that minimize the specified metric. 

For ensemble models like RF and LightGBM, considering training time, we train a model using the data 

from this period and only apply this model to new data when making predictions. We utilise a 

hyperparameter optimizer and time-sensitive cross-validation to determine their hyperparameters. 

 

 

Figure 24. Data splitting for experiments. 

 

To test the performance of the model, we select data from 'July 1, 2019' to 'May 1, 2020' and use a 

moving window to simulate the actual application of our model. The workflow is as follows: 

1. Select a date within the specified period and use it as the current date. 

2. Use the previous day_in_training_history worth of data before the current date to train the 

models. If the models are already pre-trained, this step can be skipped, and the models can be 

used directly for forecasting or refitting. 

3. Make predictions for the next 24 hours using the trained models. 

4. Record the performance metrics. 

5. Move the window one day forwards and repeat the process. 

This allows us to assess the model's performance over time and evaluate its effectiveness in real-life 

scenarios. 

To identify the model with the best performance, two training-forecasting procedures have been 

utilised based on the models for evaluation: 
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1. The "static procedure" uses the data from 'May 1, 2018' to 'April 30, 2019' to train models and 

tune hyperparameters. This procedure is applied to RF, LightBGM, and AutoARIMA. 

2. The "rolling-origin procedure" uses a moving window with a fixed length (determined by 

days_in_training_history) on the data from 'July 1, 2019' to 'May 1, 2020' to select training 

data. The origin of the moving window is shifted daily to simulate the daily training and 

forecasting procedures. This procedure is applied to statistical models such as AutoARIMA and 

DynamicOptimizedTheta that generally have shorter training time. It is important to note that 

we use AutoARIMA in both procedures to compare the performance of the ARIMA model 

under different procedures. 

We use the averaged MSE, RMSE, and MAE as performance metrics for forecasting. 

4.3. Simulation Results 

The simulation experiments have been conducted based on the methodology defined in Section 4.2. 

day_in_training_history is set to 7 (days) and all the seasonal lengths are set to 24 (hours). 

Based on the static procedure, AutoARIMA finds the best ARIMA model ARIMA(3,1,2)(0,0,2)[24]  on 

the dataset used for model tuning. ARIMA(3,1,2)(0,0,2)[24] will be compared with other statistical 

models trained using the rolling-origin procedure. Table 18 shows MSE, RMSE, and MAE values of the 

selected statistical models.    

Table 18. MSE, RMSE and MAE of statistical models. 
 ARIMA(3,1,2

)(0,0,2)[24] 
AutoARIMA HoltWinters CrostonClassic SeasonalNaive HistoricAverage

  
DynamicOptimizedTheta 

MSE 131.13 115.28 105.30 178.19 128.60 171.72 111.33 

RMSE 9.66 9.10 8.98 11.44 9.47 11.52 9.20 

MAE 6.81 6.03 6.66 8.64 6.30 8.80 6.13 

 

From the results, AutoARIMA (trained using “rolling-origin”) and DynamicOptimizedTheta outperform 

the others in terms of MAE, although they slightly lag behind HoltWinters in terms of MSE and RMSE. 

This suggests that AutoARIMA (trained using the rolling-origin) and DynamicOptimizedTheta generally 

perform well, but may occasionally have larger forecast errors, resulting in higher MSE and RMSE 

values. On the other hand, ARIMA(3,1,2)(0,0,2)[24] trained using the static procedure does not 

perform as well as AutoARIMA (trained using the rolling-origin). This could be because the EV demand 

forecast relies on more recent data, making the orders used by ARIMA(3,1,2)(0,0,2)[24] slightly 

outdated. 

Furthermore, the HistoricAverage model performs the worst, as it assumes that EV charging demand 

is simply an average of past values. The CrostonClassic model also performs poorly, as it is designed 

for forecasting intermittent patterns.  

Last, we have observed that models such as AutoARIMA and DynamicOptimizedTheta, which consider 

seasonality and long-term trends, perform better than models that do not consider these factors 

(HistoricAverage and CrostonClassic). This highlights the importance of including the analysis of 

seasonality in the forecasting process. In our experiments, we set the seasonal_length for some models 

to 24 hours for our initial experiments. However, the performance of some models can be further 

improved by carefully selecting the seasonal_length parameter. 
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To train our forecasting models using ensemble models, we utilise both static and rolling-origin 

procedures. This allows us to observe their performance under different simulation procedures. 

However, we first run the static procedure and use grid search to find the best estimators. The best 

estimators found can be used for EV load forecasting in the static procedure and to determine the 

hyperparameters of forecasting models in the rolling-origin procedure. 

It is important to note that the hyperparameters selected in the static procedure may not be optimal 

for the rolling-origin procedure. This is because the two procedures use different data with different 

lengths to fit models. However, to save time and avoid hyperparameter tuning for every simulation 

date in the rolling-origin procedure, we will use the hyperparameters selected by the static procedure 

as the starting point for our experiment. 

Lastly, the search space for these hyperparameters is defined as follows. 

 

Figure 25. The search space used by two ensemble methods for hyperparameter tuning. 

 

The optimal value for num_input_lags has been determined to be 0. The best models for LightGBM 

and RF are: LGBMRegressor(learning_rate=0.01, max_depth=3, n_estimators=200, num_leaves=7) and 

RandomForestRegressor(max_depth=3, n_estimators=150). These hyperparameters will be utilised in 

the rolling-origin procedure.  

The MSE, RMSE, and MAE metrics of the ensemble models are summarized in Table 19. 

Table 19. MSE, RMSE and MAE of ensemble models. 
 LGBMRegressor 

(rolling-origin) 
RandomForestRegressor 

(rolling-origin) 
LGBMRegressor 

(static) 
RandomForestRegressor 

(static) 

MSE 81.37 71.59 643.20 730.73 

RMSE 7.93 7.21 22.78 24.76 

MAE 5.65 5.07 20.10 21.24 

 

Compared to the statistical models, the two ensemble models trained using the rolling-origin 

procedure demonstrate lower forecast errors. This is because we have utilised a greater number of 

features to train the models, and the ensemble mechanism has enhanced the learning and forecasting 

capabilities of weak decision trees. On the other hand, the ensemble models trained using the static 

process exhibit significantly higher errors compared to other models. This could be due to the fact that 
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the ensemble models trained using the static procedure do not update themselves with the most 

recent data, and the large amount of historical data used for training does not compensate for the 

disadvantage of not utilising the latest data. This indicates the importance of tuning hyperparameters 

and fitting models using the latest data. 

It is also important to note that the simulation process for the two ensemble models, using the rolling-

origin procedure, took 1.56 days. In contrast, the total time for running the six statistical models, using 

the same procedure, was only 6.64 hours. The longer simulation time could be attributed to the 

complexities of additional features and ensemble models. 

Therefore, when designing EV demand forecast models, it is recommended to consider any limitations 

on the training time of models. It is important to choose models that satisfy both accuracy and training 

time requirements. 

Finally, the forecasts and ground truth for the 1st week of July 2019 have been plotted in the following 

figures, to compare the forecasting performance of models.  

 

Figure 26. Visualisation of EV forecasts from the ensemble methods 

 

From Figure 26, it can be observed that the two ensemble methods can catch the ups and downs of 

EV charging power during the day, but there are some mismatches for the time that EV peak power 

appear. Thus, even though the two ensemble methods outperform other methods, their forecasts are 

still not perfect. Furthermore, the forecasts from RF seem to be higher than those from the LightGBM, 

making it closer to the ground truth data. This may explain why RF had higher forecast accuracy.   

For the forecasts from statistical models in Figure 27, forecasts from CrostonClassic and 

HistoricAverage seem to form straight lines and could not catch the fluctuations of EV charging power.  

The three statistical methods with better peformance, AutoARIMA, HoltWinters, and 

DynamicOptimizedTheta, show much better matches than the previous two methods. On the other 

hands, we observed that some methods, especially the HoltWinters methods generated some negative 

forecasts at the beginning, indicating the needs to include additional steps to ensure positive forecasts.   
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Figure 27. Visualisation of EV forecasts from the statistical methods: (top) forecasts from all models; (middle) 
forecasts from CrostonClassic and HistoricAverage; (bottom) forecasts from AutoARIMA, HoltWinters, and 

DynamicOptimizedTheta. 

 

4.4. Summary and Future Work 

In this section, the Eaton CIP team has conducted research to evaluate different forecasting models 

and train-forecasting strategies. Two categories of time series forecasting models, statistical models 

and ensemble models, were selected to assess their effectiveness. The comparative analysis was 

performed using data from the Caltech site of the ACN dataset. Forecasts were generated for 24-hour 

time horizons, using two different training-forecasting procedures. 

When compared to the seasonal naive model, the AutoARIMA and DynamicOptimizedTheta models 

show improvements in MAE performance by 4.3% and 2.7% respectively. HoltWinters's average RMSE 

performance is better than that of other statistical models, achieving a 5.2% performance 

improvement compared to the baseline. The results also showed that the seasonal ARIMA model 

trained by the roll-origin procedure performs better than the one of the static procedure, indicating 

the importance of using the most up-to-date data available to train models.  

On the other hand, the two ensemble models, Random Forecast and LightBGM, outperform the 

statistical models. When compared to the seasonal naive model, they show improvements in MAE 

performance by 10.3% and 19.5% respectively, which are quite higher than the improvements 

achieved by AutoARIMA and DynamicOptimizedTheta. This is because they utilise additional features 
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and have powerful forecasting abilities. However, it is worth noting that the simulation time for these 

models is longer due to the increased complexities.   

For future work, it is recommended to conduct additional experiments by including statistical models 

that utilize exogenous features. The current comparison may not be entirely fair, as ensemble methods 

can leverage the transform steps in their pipelines to obtain additional information. The research work 

conducted so far is exploratory and experience-based, and it could be improved by designing a more 

rigorous experiment plan. Additionally, it is suggested to include deep learning models such as LSTM 

in the future comparative analysis to gain a comprehensive view of all the EV charging demand 

forecasting models. 

 

5. Conclusions 
This deliverable demonstrates methods and algorithms to improve forecast of 1) energy prices using a 

deep-weighted ensemble model, 2) demand from a user perspective with a week-ahead forecast of 

travel patterns and energy consumption and 3) charging demand from the charge station perspective.  

Section 2 discusses the significance of price forecasting for energy aggregators. The effectiveness of 

charging control by aggregators heavily depends on advanced knowledge of electricity prices, making 

accurate price forecasting a crucial tool for optimizing participation in demand response programs. 

This enables aggregators to manage charging loads effectively, meet EV user requirements, facilitate 

TSO/DSO regulation services, and maximize overall benefits. Traditional statistical methods, which 

often rely on average cases, prove inadequate for accurately forecasting dynamic electricity price 

variations due to their fluctuating nature. To address this knowledge gap, we introduced the Deep-

Weighted Ensemble Model (DWEM) for forecasting energy prices to manage EV charging at the 

aggregator level. We formulated the problem and presented a comprehensive mechanism for 

developing the DWEM model. Testing was conducted on a publicly available dataset from the Texas 

electricity market, specifically the ERCOT (Electric Reliability Council of Texas), representing wholesale 

electricity prices in the Houston zone.  Results were evaluated against the XGBoost, Linear Regression, 

Light Gradient Boosting Model, and Multivariate LSTM models in terms of accuracy, mean square error 

(MSE), and mean absolute error (MAE). The DWEM achieved the highest accuracy of 87.41% compared 

to these different models. Additionally, we considered user and auto modified hyperparameter tuning 

mechanisms for standard, stack, and DWEM models and conducted comparative studies with and 

without outlier scenarios. The results demonstrated that the proposed DWEM outperformed 

individual standard and stack LSTM models in terms of accuracy, MSE, and MAE. 

Section 3 presents a novel tool to provide users the required inputs to perform optimal smart and 

bidirectional charging automatically any time they arrive at a charging station. This is done by 

predicting the future trip locations and energy consumption of the EV for the next week. The 

conceptual interest of this tool is to provide users with the information they need to optimally manage 

their EV based on their mobility patterns. If implemented this can provide economic savings in form of 

a reduction in the total cost of the charging sessions and improved battery state of health care.  

Drawing from a dataset that includes travel locations and trip energy consumption, the goal of the 

forecasting tool is to first predict a timeseries of the locations that the EV is going to visit the following 
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week. Second, given the location profile of the vehicle, the tool trains a second model which tries to 

precisely estimate the energy consumption of the EV. At first glance it would seem that only knowing 

the trip consumption would be enough for the optimization tool; however, knowing the location of the 

vehicle is important too. In real environments, different locations can bring particularities that can be 

accommodated by considering locations: the location may or may not have EVSEs, different pricing 

strategies and/or CSO operators, etc. We used taxi data to perform the analysis because personal 

transport vehicle data was not available.  

The results show that the method is feasible; however, the use of taxi data is not well suited to asses 
the quality of the forecast because the taxi data has many pick-up/drop-off/charging locations in 
comparison to a typical personal transport vehicle which includes far fewer charging locations to 
consider, leading to a variability increase across geographical domain. This led to issues with 
performance and limted the ability to assess the quality of the forecast. Taxi data is more suitable for 
overall city mobility demand forecast, considering it aggregated and not individual taxi driver profile. 
While not as relevant for personal transport, the use of taxi data has interesting applications for the 
work done in FLOW Work Package 5 or to consider from a charging station perspective. Future work 
should implement the proposed forecasting method using private vehicle data to confirm. 
Furthermore, private vehicles fleet also includes repetitive trips such us from home to workplace and 
vice versa. This could lead to an increase of precision when predicting the vehicle position and its 
energy consumption.  

To operationalize the tool, the second part of the work is to take the location and energy consumption 

data and implement an optimization model, defined as User Smart Model, to determine the optimal 

charging pattern including desired SOC. In contrast to typical smart charge strategies implemented by 

CSOs, this model takes into consideration future usage of the vehicle to make optimal decisions in the 

present. The performance of using this methodology (i.e., User smart charge) has been tested against 

two other methodologies (“immediate” and “CSO smart charging”), showing promising results in the 

form of economical savings and battery health improvement.  

To forecast day-ahead building electric vehicle charging demand, the Eaton CIP team conducted 

research using a real EV charging dataset. The purpose was to evaluate different forecasting models 

and train-forecasting strategies. They assessed two categories of time series forecasting models: 

statistical models and ensemble models, along with two training-forecasting strategies: static and 

rolling-origin procedures. The results indicate that ensemble methods outperform statistical models, 

although they may require longer training time. Among the statistical models, AutoARIMA, 

DynamicOptimizedTheta, and HoltWinters are effective in forecasting EV charging demand while 

maintaining simplicity. Therefore, the choice of EV charging forecasting model should be based on the 

specific requirements of real EV demand forecasting applications. 
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